From 20056bac47014caa3b44cab56d0a22e506ad4220 Mon Sep 17 00:00:00 2001 From: Andreas Tsouchlos Date: Mon, 3 Nov 2025 13:34:47 +0100 Subject: [PATCH] tut3: Add theory 1 summary --- src/2025-12-05/presentation.tex | 66 ++++++++++++++++----------------- 1 file changed, 31 insertions(+), 35 deletions(-) diff --git a/src/2025-12-05/presentation.tex b/src/2025-12-05/presentation.tex index 6a0e7a4..4bda3e4 100644 --- a/src/2025-12-05/presentation.tex +++ b/src/2025-12-05/presentation.tex @@ -291,7 +291,8 @@ \centering \textbf{Poisson Verteilung}\\ \vspace*{10mm} - Binomialverteilung für $N\rightarrow \infty$ mit $pN=\text{const.}=: \lambda$ + Binomialverteilung für $N\rightarrow \infty$ mit + $pN=\text{const.}=: \lambda$ \rule{0.9\textwidth}{0.4pt} \begin{gather*} X \sim \text{Poisson}(\lambda) @@ -310,45 +311,40 @@ \frametitle{Zusammenfassung} \begin{columns} - \column{\kitthreecolumns} + \column{\kittwocolumns} + \begin{greenblock}{Verteilungsfunktion (diskret)} + \vspace*{-6mm} + \begin{gather*} + F_X(x) = P(X \le x) = \sum_{n:x_n < x} P_X(x_n) + \end{gather*} + \end{greenblock} + \column{\kittwocolumns} + \begin{greenblock}{Erwartungswert} + \vspace*{-6mm} + \begin{gather*} + E(X) = \sum_{n=1}^{\infty} x_n P(X=x_n) + \end{gather*}% + \vspace*{-8mm}% + \begin{align*} + E(X + b) &= E(X) + b\\ + E(X+Y) &= E(X) + E(Y)\\ + E(aX) &= aE(X) + \end{align*} + \end{greenblock} + \column{\kittwocolumns} \begin{greenblock}{Binomialverteilung} - adsf + \vspace*{-6mm} + \begin{gather*} + P_X(k) = \binom{N}{k} p^k (1-p)^{1-k} + \end{gather*} + \begin{align*} + E(X) &= Np\\ + V(X) &= Np(1-p) + \end{align*} \end{greenblock} \end{columns} \end{frame} -% \begin{frame} -% \frametitle{Zusammenfassung} -% -% \begin{columns} -% \column{\kitthreecolumns} -% \begin{greenblock}{Bedingte Wahrscheinlichkeit} -% \vspace*{-6mm} -% \begin{gather*} -% P(A\vert B) = \frac{P(AB)}{P(B)} -% \end{gather*} -% \end{greenblock} -% \column{\kitthreecolumns} -% \begin{greenblock}{Formel von Bayes} -% \vspace*{-6mm} -% \begin{gather*} -% P(A\vert B) = \frac{P(B\vert A) P(A)}{P(B)} -% \end{gather*} -% \end{greenblock} -% \end{columns} -% \begin{columns} -% \column{\kitonecolumn} -% \column{\kitthreecolumns} -% \begin{greenblock}{Satz der totalen Wahrscheinlichkeit} -% \vspace*{-6mm} -% \begin{gather*} -% P(B) = \sum_{n} P(B\vert A_n)P(A_n) -% \end{gather*} -% \end{greenblock} -% \column{\kitonecolumn} -% \end{columns} -% \end{frame} - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Aufgabe}