diff --git a/src/2026-01-30/presentation.tex b/src/2026-01-30/presentation.tex index 839de19..6ca1c08 100644 --- a/src/2026-01-30/presentation.tex +++ b/src/2026-01-30/presentation.tex @@ -515,7 +515,7 @@ \begin{greenblock}{Kovarianz} \vspace*{-8mm} \begin{align*} - \text{cov}(X,Y) = E(X,Y) - E(X)E(Y) + \text{cov}(X,Y) = E(XY) - E(X)E(Y) \end{align*} \end{greenblock} \end{columns} @@ -855,7 +855,7 @@ wenn $Np(1-p) \ge 9$: \vspace{-2mm} \begin{align*} - P_X(a < S_N \le b) = \nsum_{k=a}^{b} \binom{N}{k} p^k(1-p)^{N-k} + P_{S_N}(a < S_N \le b) = \nsum_{k=a}^{b} \binom{N}{k} p^k(1-p)^{N-k} \hspace{5mm}\approx\hspace{5mm} \Phi\left(\frac{b - Np}{\sqrt{Np(1-p)}}\right) - \Phi\left(\frac{a - Np}{\sqrt{Np(1-p)}}\right) @@ -1037,7 +1037,7 @@ \end{gather*} \vspace*{-7mm} \begin{align*} - P_X(a < S_N \le b) &= \nsum_{k=a}^{b} \binom{N}{k} + P_{S_N}(a < S_N \le b) &= \nsum_{k=a}^{b} \binom{N}{k} p^k(1-p)^{N-k} \\ & \approx \Phi\left(\frac{b - Np}{\sqrt{Np(1-p)}}\right) -