rfics-presentation/sections/03_simulation_results.tex

650 lines
19 KiB
TeX

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Own Simulations}
\label{sec:Own Simulation}
\begin{frame}
\frametitle{Design Steps}
\begin{enumerate}
\item Determination of operating point of individual stages
\begin{itemize}
\item SQuad
\item TIA
\item Buffer
\end{itemize}
\item Integration
\begin{itemize}
\item SQuad \& TIA
\item SQuad, TIA \& Buffer
\end{itemize}
\item Further iterative optimization of parameters (e.g., determine LO power,\\ increase buffer current for linearity, \ldots)
\item Matching of input and output
\end{enumerate}
\end{frame}
\begin{frame}
\frametitle{Operating Point: Switching Quad}
\begin{minipage}{0.5\textwidth}
\begin{itemize}
\item Operation
\begin{itemize}
\item Responsible for actual mixing
\item Multiplication of RF-signal with square wave $\rightarrow$ generation of mixing products at IF-frequency and harmonics
\end{itemize}
\end{itemize}
\bigskip
\begin{itemize}
\item Determination of operating point
\begin{itemize}
\item Exact value of $V_\text{CE}$ not crucial
\item $V_\text{BE}$: Examination of $s_\text{21}$
of Large-signal s-parameter simulation and noise figure (analogous to \citereference{Mai+21})
\end{itemize}
\end{itemize}
\end{minipage}%
\begin{minipage}{0.5\textwidth}
\centering
\begin{figure}[H]
\vspace*{-5mm}
\hspace*{15mm}%
\includegraphics[width=0.83\textwidth]{res/simulation/SQuad_OP_01.pdf}
\vspace*{-18mm}
\hspace*{-55mm}%
\includegraphics[width=0.4\textwidth]{res/simulation/SQuad_OP_02.pdf}
\end{figure}
\end{minipage}
\vspace{4mm}
\addreference{Mai+21}{T. Maiwald et al., ``A Broadband Zero-IF Down-Conversion Mixer in 130 nm SiGe BiCMOS for Beyond 5G Communication Systems in D-Band'', in \emph{IEEE Transactions on Circuits and Systems II: Express Briefs}, vol. 68, no. 7, pp. 2277-2281, July 2021}
\end{frame}
\begin{frame}
\frametitle{Operating Point: Switching Quad}
\vspace*{-2mm}
\begin{figure}[H]
\centering
\begin{subfigure}{0.5\textwidth}
\begin{tikzpicture}
\begin{axis}[
width=\textwidth,
height=0.75\textwidth,
xlabel={$V_\text{BE}\ (\text{V})$},
ylabel={$\mathit{s_\text{21}}\ (\text{dB})$},
ytick={-50,-40,...,0,10},
xtick={0.5,0.6,...,1.2},
grid,
]
\addplot+[mark=none, line width=1pt]
table[col sep=comma, x=VBE, y=s21]
{res/simulation/SQuad_OP_s21_vs_VBE.csv};
\addplot[mark=*] coordinates {(0.8,5.031)} node[pin=-100:{Q}]{} ;
\end{axis}
\end{tikzpicture}
\end{subfigure}%
\begin{subfigure}{0.5\textwidth}
\begin{tikzpicture}
\begin{axis}[
width=\textwidth,
height=0.75\textwidth,
xlabel={$V_\text{BE}\ (\text{V})$},
ylabel={$\mathit{NF}_\text{dsb}\ (\text{dB})$},
ytick={0,10,...,60},
xtick={0.5,0.6,...,1.2},
grid,
]
\addplot+[mark=none, line width=1pt]
table[col sep=comma, x=VBE, y=NFdsb]
{res/simulation/SQuad_NFdsb.csv};
\addplot[mark=*] coordinates {(0.8,8.607)} node[pin=100:{Q}]{} ;
\end{axis}
\end{tikzpicture}
\end{subfigure}
\end{figure}
\vspace*{-2mm}
\begin{itemize}
\item Plotted for $f_\text{LO}=\SI{135}{GHz}, f_\text{RF}=\SI{140}{GHz}$
\item Double-sideband noise figure $\mathit{NF}_\text{dsb}$ (direct conversion mixer)
\item Chosen operating point: $V_\text{BE} = \SI{0.8}{V}$
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Operating Point: Transimpedance Amplifier}
\begin{minipage}{0.5\textwidth}
\begin{itemize}
\item Operation
\begin{itemize}
\item Conversion of switched current to voltage, amplification
\item Modified Cherry-Hooper topology: decoupling of bandwidth and gain, modification for greater dynamic range
\end{itemize}
\end{itemize}
\bigskip
\begin{itemize}
\item Determination of operating point
\begin{itemize}
\item Exact value of supply voltage not crucial
\item S-parameter simulation: Examination of maximum available gain ($\mathit{MAG}$) and minimum noise figure ($\mathit{NF}_\text{min}$)
\item At this stage: only determination of operating point of bottom transistors
\end{itemize}
\end{itemize}
\end{minipage}%
\begin{minipage}{0.5\textwidth}
\vspace*{-6mm}
\begin{figure}[H]
\centering
\hspace*{-8mm}
\includegraphics[width=0.83\textwidth]{res/simulation/TIA_OP_01.pdf}
\vspace*{-20mm}
\hspace*{58mm}%
\includegraphics[width=0.33\textwidth]{res/simulation/TIA_OP_02.pdf}
\end{figure}
\end{minipage}
\end{frame}
\begin{frame}
\frametitle{Operating Point: Transimpedance Amplifier}
\begin{figure}[H]
\centering
\begin{subfigure}{0.5\textwidth}
\begin{tikzpicture}
\begin{axis}[
width=\textwidth,
height=0.75\textwidth,
xlabel={$I_\text{C}\ (\text{mA})$},
ylabel={$\mathit{MAG}\ (\text{dB})$},
grid,
xtick={0,2,...,20},
ytick={-15, -10, ..., 15},
]
\addplot+[mark=none, line width=1pt]
table[col sep=comma, x=IC, y=MaxGain]
{res/simulation/TIA_OP_MaxGain_vs_IC.csv};
\addplot[mark=*] coordinates {(5,15.532)} node[pin=-100:{Q}]{} ;
\end{axis}
\end{tikzpicture}
\end{subfigure}%
\begin{subfigure}{0.5\textwidth}
\begin{tikzpicture}
\begin{axis}[
width=\textwidth,
height=0.75\textwidth,
xlabel={$I_\text{C}\ (\text{mA})$},
ylabel={$\mathit{NF}_\text{min}\ (\text{dB})$},
xtick={0,2,...,20},
ytick={0,2,...,16},
grid,
]
\addplot+[mark=none, line width=1pt]
table[col sep=comma, x=IC, y=NFmin]
{res/simulation/TIA_OP_NFmin_vs_IC.csv};
\addplot[mark=*] coordinates {(5,2.756)} node[pin=100:{Q}]{} ;
\end{axis}
\end{tikzpicture}
\end{subfigure}
\end{figure}
\begin{itemize}
\item Plotted for $f_\text{IF} = \SI{20}{GHz}$
\item Chosen operating point: $I_\text{C} = \SI{5}{mA}$ (with multiplier of $10$)
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Operating Point: Buffer}
\begin{minipage}{0.45\textwidth}
\begin{itemize}
\item Operation
\begin{itemize}
\item Amplification of signal
\item Comprises three stages: two differential amplifiers and an emitter follower
\end{itemize}
\end{itemize}
\bigskip
\begin{itemize}
\item Determination of operating point
\begin{itemize}
\item Exact value of supply voltage not crucial at this point
\item S-parameter simulation: Examination of $\mathit{MAG}$ and $\mathit{NF}_\text{min}$
\item \textbf{Note}: Adjustment with respect to linearity at the very end
\end{itemize}
\end{itemize}
\end{minipage}%
\begin{minipage}{0.57\textwidth}
\vspace*{-5mm}
\begin{figure}[H]
\hspace*{2mm}%
\includegraphics[width=1\textwidth]{res/simulation/Buffer_OP.pdf}
\end{figure}
\end{minipage}
\end{frame}
\begin{frame}
\frametitle{Operating Point: Buffer}
\begin{figure}
\centering
\begin{subfigure}{0.5\textwidth}
\begin{tikzpicture}
\begin{axis}[
width=\textwidth,
height=0.75\textwidth,
xlabel={$I_\text{C}\ (\text{mA})$},
ylabel={$\mathit{MAG}\ (\text{dB})$},
grid,
xtick={0.5,1,...,5},
ytick={-20, -15, ..., 20},
]
\addplot+[mark=none, line width=1pt]
table[col sep=comma, x=IC, y=MaxGain]
{res/simulation/Buffer_OP_MaxGain_vs_IC.csv};
\addplot[mark=*] coordinates {(3,8.231)} node[pin=-100:{Q}]{} ;
\end{axis}
\end{tikzpicture}
\end{subfigure}%
\begin{subfigure}{0.5\textwidth}
\begin{tikzpicture}
\begin{axis}[
width=\textwidth,
height=0.75\textwidth,
xlabel={$I_\text{C}\ (\text{mA})$},
ylabel={$\mathit{NF}_\text{min}\ (\text{dB})$},
xtick={0.5,1,...,5},
ytick={0,2,...,22},
grid,
]
\addplot+[mark=none, line width=1pt]
table[col sep=comma, x=IC, y=NFmin]
{res/simulation/Buffer_OP_NFmin_vs_IC.csv};
\addplot[mark=*] coordinates {(3,3.419)} node[pin=100:{Q}]{} ;
\end{axis}
\end{tikzpicture}
\end{subfigure}
\end{figure}
\begin{itemize}
\item Plotted for $f_\text{IF} = \SI{20}{GHz}$
\item Chosen operating point: $I_\text{C} = \SI{3}{mA}$
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Integration: SQuad \& TIA}
\begin{minipage}{0.45\textwidth}
\begin{itemize}
\item DC coupling $\rightarrow$ Redesign of bias circuitry
\item Supply voltage fixed to $\SI{2.5}{\volt}$ to not exceed breakdown voltage of transistors
\item Examination using Harmonic-Balance simulation:
\begin{itemize}
\item Conversion gain
\item $\SI{1}{dB}$ compression point ($P_{\SI{1}{dB}}$)
\end{itemize}
\end{itemize}
\end{minipage}%
\begin{minipage}{0.6\textwidth}
\vspace*{-38mm}
\begin{figure}[H]
\includegraphics[width=0.67\textwidth]{res/simulation/INT_SQuad_TIA_01.pdf}
\vspace*{-50mm}
\hspace{-70mm}%
\includegraphics[width=0.28\textwidth]{res/simulation/INT_SQuad_TIA_02.pdf}
\vspace*{-20mm}
\hspace{60mm}%
\includegraphics[width=0.22\textwidth]{res/simulation/INT_SQuad_TIA_03.pdf}
\end{figure}
\end{minipage}
\end{frame}
\begin{frame}
\frametitle{Integration: SQuad \& TIA}
\vspace*{-4mm}
\begin{figure}
\begin{subfigure}{0.5\textwidth}
\begin{tikzpicture}
\begin{axis}[
width=\textwidth,
height=0.5\textwidth,
ylabel={$P_\text{IF}\ (\text{dBm})$},
xlabel={$P_\text{LO}\ (\text{dBm})$},
grid,
xtick={-50,-40,...,10},
ytick={-80,-70,...,-20},
]
\addplot+[mark=none, line width=1pt]
table[col sep=comma, x=LOPow, y expr=(\thisrowno{1}-40)]
{res/simulation/INT_SQuad_TIA_ConvGain_vs_LOPow.csv};
\addplot[mark=*] coordinates {(-5,-31.031)} node[pin=-100:{OP}]{} ;
\end{axis}
\end{tikzpicture}
\end{subfigure}%
\begin{subfigure}{0.5\textwidth}
\hspace*{2mm}
\begin{tikzpicture}
\begin{axis}[
width=\textwidth,
height=0.5\textwidth,
ylabel={Conversion Gain (dB)},
xlabel={$f_\text{RF}\ (\text{GHz})$},
xtick={-110,-100,...,170},
ytick={-10,-8,...,10},
grid,
]
\addplot+[mark=none, line width=1pt]
table[col sep=comma, x=RFFreq, y=ConvGain]
{res/simulation/INT_SQuad_TIA_ConvGain_vs_RFFreq.csv};
\draw[dashed] (axis cs:135, 0) -- (axis cs:135,12);
\node at (axis cs:147,1.25) {$f_\text{LO} = \SI{135}{GHz}$};
\end{axis}
\end{tikzpicture}
\end{subfigure}%
\begin{subfigure}{0.5\textwidth}
\begin{tikzpicture}
\begin{axis}[
width=\textwidth,
height=0.5\textwidth,
ylabel={$P_\text{IF}\ (\text{dBm})$},
xlabel={$P_\text{RF}\ (\text{dBm})$},
xtick={-60,-50,...,20},
ytick={-60,-50,...,10},
grid,
]
\addplot+[mark=none, line width=1pt]
table[col sep=comma, x=RFPow, y expr=(\thisrowno{1}-40)]
{res/simulation/INT_SQuad_TIA_ConvGain_vs_RFPow.csv};
\addplot[mark=*] coordinates {(-20,-11.927)} node[pin=-80:{$P_{\SI{1}{dB}}$}]{} ;
\end{axis}
\end{tikzpicture}
\end{subfigure}%
\begin{subfigure}{0.5\textwidth}
\begin{tikzpicture}
\begin{axis}[
width=\textwidth,
height=0.5\textwidth,
ylabel={$\mathit{NF}_\text{dsb}\ (\text{dB})$},
xlabel={$f_\text{IF}\ (\text{GHz})$},
xtick={0,5,...,30},
ytick={9.4,9.6,...,10.8},
grid,
]
\addplot+[mark=none, line width=1pt]
table[col sep=comma, x=f, y=NF]
{res/simulation/INT_SQuad_TIA_noise.csv};
\draw[dashed] (axis cs:135, 0) -- (axis cs:135,12);
\node at (axis cs:147,1.25) {$f_\text{LO} = \SI{135}{GHz}$};
\end{axis}
\end{tikzpicture}
\end{subfigure}%
\end{figure}
\end{frame}
\begin{frame}
\frametitle{Integration: SQuad, TIA \& Buffer}
\begin{minipage}{0.6\textwidth}
\begin{itemize}
\item DC coupling $\rightarrow$ Redesign of bias circuitry
\item Supply voltage fixed to $\SI{2.5}{\volt}$
\item Examination using Harmonic-Balance simulation:
\begin{itemize}
\item Conversion gain
\item $\SI{1}{dB}$ compression point ($P_{\SI{1}{dB}}$)
\end{itemize}
\end{itemize}
\end{minipage}%
\begin{minipage}{0.4\textwidth}
\vspace*{-5mm}
\begin{figure}[H]
\includegraphics[width=0.9\textwidth]{res/simulation/INT_Buffer.pdf}
\end{figure}
\end{minipage}
\end{frame}
\begin{frame}
\frametitle{Integration: SQuad, TIA \& Buffer}
\vspace*{-4mm}
\begin{figure}
\begin{subfigure}{0.5\textwidth}
\begin{tikzpicture}
\begin{axis}[
width=\textwidth,
height=0.5\textwidth,
ylabel={$P_\text{IF}\ (\text{dBm})$},
xlabel={$P_\text{LO}\ (\text{dBm})$},
grid,
xtick={-50,-40,...,10},
ytick={-60,-50,...,0},
]
\addplot+[mark=none, line width=1pt]
table[col sep=comma, x=LOPow, y expr=(\thisrowno{1}-40)]
{res/simulation/INT_Buffer_ConvGain_vs_LOPow.csv};
\addplot[mark=*] coordinates {(-5,-2.226)} node[pin=-100:{OP}]{} ;
\end{axis}
\end{tikzpicture}
\end{subfigure}%
\begin{subfigure}{0.5\textwidth}
\hspace{2mm}
\begin{tikzpicture}
\begin{axis}[
width=\textwidth,
height=0.5\textwidth,
ylabel={Conversion Gain (dB)},
xlabel={$f_\text{RF}\ (\text{GHz})$},
xtick={-110,-100,...,170},
ytick={20,22,...,40},
grid,
]
\addplot+[mark=none, line width=1pt]
table[col sep=comma, x=RFFreq, y=ConvGain]
{res/simulation/INT_Buffer_ConvGain_vs_RFFreq.csv};
\draw[dashed] (axis cs:135, 30) -- (axis cs:135,40);
\node at (axis cs:147,33) {$f_\text{LO} = \SI{135}{GHz}$};
\end{axis}
\end{tikzpicture}
\end{subfigure}%
\begin{subfigure}{0.5\textwidth}
\begin{tikzpicture}
\begin{axis}[
width=\textwidth,
height=0.5\textwidth,
ylabel={$P_\text{IF}\ (\text{dBm})$},
xlabel={$P_\text{RF}\ (\text{dBm})$},
xtick={-60,-50,...,20},
ytick={-50,-40,...,10},
grid,
]
\addplot+[mark=none, line width=1pt]
table[col sep=comma, x=RFPow, y expr=(\thisrowno{1}-40)]
{res/simulation/INT_Buffer_ConvGain_vs_RFPow.csv};
\addplot[mark=*] coordinates {(-40,-2.226)} node[pin=-80:{$P_{\SI{1}{dB}}$}]{} ;
\end{axis}
\end{tikzpicture}
\end{subfigure}%
\begin{subfigure}{0.5\textwidth}
\begin{tikzpicture}
\begin{axis}[
width=\textwidth,
height=0.5\textwidth,
ylabel={$\mathit{NF}_\text{dsb}\ (\text{dB})$},
xlabel={$f_\text{IF}\ (\text{GHz})$},
xtick={0,5,...,30},
ytick={9.4,9.6,...,10.8},
grid,
]
\addplot+[mark=none, line width=1pt]
table[col sep=comma, x=f, y=NF]
{res/simulation/INT_Buffer_noise.csv};
\end{axis}
\end{tikzpicture}
\end{subfigure}%
\end{figure}
\end{frame}
\begin{frame}
\frametitle{Final Circuit}
\begin{figure}[H]
\centering
\vspace*{-20mm}
\hspace{40mm}
\includegraphics[width=0.7\textwidth]{res/simulation/final_01.pdf}
\vspace*{-40mm}
\hspace{-120mm}
\includegraphics[width=0.2\textwidth]{res/simulation/final_02.pdf}
\end{figure}
\end{frame}
\begin{frame}
\frametitle{Final Circuit}
\vspace*{-4mm}
\begin{figure}
\begin{subfigure}{0.5\textwidth}
\begin{tikzpicture}
\begin{axis}[
width=\textwidth,
height=0.5\textwidth,
ylabel={$20 \log_{10}(s_{xy})$ (dB)},
xlabel={$f (\text{GHz})$},
legend pos = south east,
grid,
]
\addplot+[mark=none, line width=1pt]
table[col sep=comma, x=f, y=SRF]
{res/simulation/final_S_RF.csv};
\addlegendentry{$s_{11}$ (RF)}
\addplot+[mark=none, line width=1pt]
table[col sep=comma, x=f, y=SLO]
{res/simulation/final_S_LO.csv};
\addlegendentry{$s_{22}$ (LO)}
\end{axis}
\end{tikzpicture}
\end{subfigure}%
\begin{subfigure}{0.5\textwidth}
\hspace{2mm}
\begin{tikzpicture}
\begin{axis}[
width=\textwidth,
height=0.5\textwidth,
ylabel={Conversion Gain (dB)},
xlabel={$f_\text{RF}\ (\text{GHz})$},
xtick={-110,-100,...,170},
ytick={10,15,...,40},
grid,
]
\addplot+[mark=none, line width=1pt]
table[col sep=comma, x=RFFreq, y=ConvGain]
{res/simulation/final_ConvGain_vs_RFFreq.csv};
\draw[dashed] (axis cs:135, 5) -- (axis cs:135,40);
\node at (axis cs:147,12) {$f_\text{LO} = \SI{135}{GHz}$};
\end{axis}
\end{tikzpicture}
\end{subfigure}%
\begin{subfigure}{0.5\textwidth}
\begin{tikzpicture}
\begin{axis}[
width=\textwidth,
height=0.5\textwidth,
ylabel={$\mathit{NF}_\text{dsb}\ (\text{dB})$},
xlabel={$f_\text{IF}\ (\text{GHz})$},
xtick={0,5,...,30},
ytick={9,9.5,...,11.5},
grid,
]
\addplot+[mark=none, line width=1pt]
table[col sep=comma, x=f, y=NF]
{res/simulation/final_noise.csv};
\end{axis}
\end{tikzpicture}
\end{subfigure}%
\begin{subfigure}{0.5\textwidth}
\begin{tikzpicture}
\begin{axis}[
width=\textwidth,
height=0.5\textwidth,
ylabel={$P_\text{IF}\ (\text{dBm})$},
xlabel={$P_\text{RF} / P_\text{LO} \ (\text{dBm})$},
legend pos = south west,
xtick = {-90,-80,...,10},
ytick = {-100,-80,...,0},
grid,
]
\addplot+[mark=none, line width=1pt]
table[col sep=comma, x=RFPow, y expr=(\thisrowno{1}-40)]
{res/simulation/final_ConvGain_vs_RFPow.csv};
\addlegendentry{RF}
\addplot+[mark=none, line width=1pt]
table[col sep=comma, x=LOPow, y expr=(\thisrowno{1}-40)]
{res/simulation/final_ConvGain_vs_LOPow.csv};
\addlegendentry{LO}
\end{axis}
\end{tikzpicture}
\end{subfigure}%
\end{figure}
\end{frame}
%\begin{frame}
% \frametitle{Simulation Setup}
%
% \begin{figure}[H]
% \centering
%
% \includegraphics[width=0.6\textwidth]{res/simulation/schematic.pdf}
% \end{figure}
%
% \begin{itemize}
% \item [TODO] Simulation schematics
% \item [TODO] Differences to schematic from paper (if any)
% \end{itemize}
%\end{frame}
%
%\begin{frame}
% \frametitle{Design Steps}
%
% \begin{itemize}
% \item [TODO] Idea: approach from lecture: first worry about actual circuit, biasing later
% \item [TODO] Choice of transistors
% \item [TODO] Choice of operating points
% \item [TODO] Rest of schematic details (?)
% \end{itemize}
%\end{frame}
%
%\begin{frame}
% \frametitle{Simulation Results}
%
% \begin{itemize}
% \item [TODO] Simulation results
% \item [TODO] Intuitive explanation of results
% \end{itemize}
%\end{frame}
%
%\begin{frame}
% \frametitle{Comparison with Standard Topology}
%
% \begin{itemize}
% \item [TODO] (Remove if not applicable)
% \item [TODO] Comparison of pros and cons of each topology
% \item [TODO] Comparison of simulation results
% \end{itemize}
%\end{frame}