

A Broadband Zero-IF Down-Conversion Mixer in 130 nm SiGe BiCMOS for Beyond 5G Communication Systems in D-Band

Andreas Tsouchlos | 10.09.2024

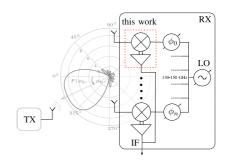
Overview

Proposed Ideas

Own Simulations

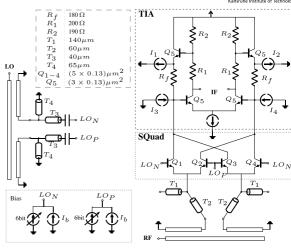
Overview

Proposed Ideas


Own Simulations

Proposed Design: Overview

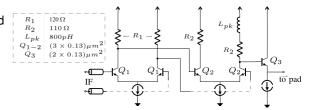
Paper by Maiwald, et al. [Mai+21]


- High bandwidth, low power consumption, small size
- Applicable to electronic beam stearing for mm-Wave
- SiGe BiCMOS technology (B11HFC) from Infineon Technologies AG with $f_{\rm t}/f_{\rm max}$ of $250/370\,{\rm GHz}$

[Mai+21] T. Maiwald et al., "A Broadband Zero-IF Down-Conversion Mixer in 130 nm SiGe BiCMOS for Beyond 5G Communication Systems in D-Band", in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 7, pp. 2277-2281, July 2021

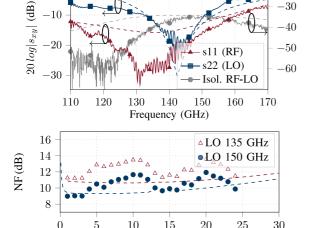
Proposed Design: Mixer Core Cell

- Usage of switching quad (SQuad) instead of conventional Gilbert cell for more voltage headroom
- Mixer loaded by modified Cherry-Hooper [сн63] transimpedance amplifier (ТІА)
- Transmission line based differential L-type matching networks for high bandwidth
- Signal fed using marchand baluns for high bandwidth

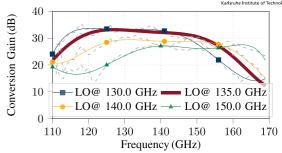


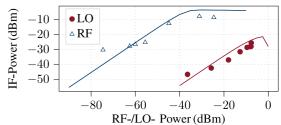
[CH63] E.M. Cherry and D.E. Hooper, "The design of wide-band transistor feedback amplifiers", *Proceedings of the Institution of Electrical Engineers*, vol. 110, pp. 375-389, February 1963

Proposed Design: IF Buffer



- Three-stages: two differential amplifier stages and an emitter follower
- Includes differential to single-ended conversion enabling dense chip-to-package transition
- Inductive peaking for bandwidth enhancement




Proposed Design: Simulation/Measurement Results

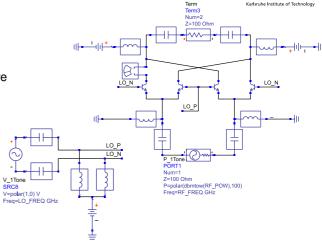
Frequency (GHz)

Overview

Proposed Ideas

Own Simulations

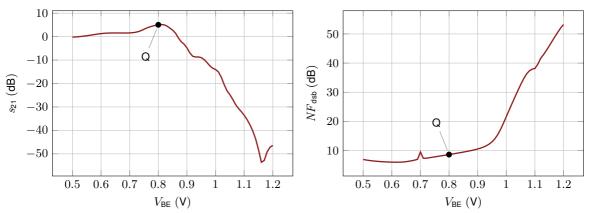
Design Steps



- Determination of operating point of individual stages
 - SQuad
 - TIA
 - Buffer
- Integration
 - SQuad & TIA
 - SQuad, TIA & Buffer
- **3** Further iterative optimization of parameters (e.g., determine LO power, increase buffer current for linearity, . . .)
- Matching of input and output

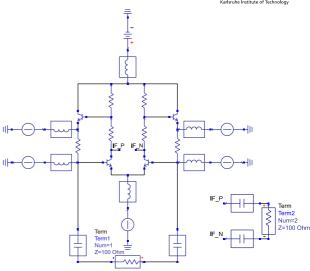
Operating Point: Switching Quad

Karlsruhe Institute of Technology


- Operation
 - Responsible for actual mixing
 - Multiplication of RF-signal with square wave
 - \rightarrow generation of mixing products at IF-frequency and harmonics
- Determination of operating point
 - \blacksquare Exact value of V_{CE} not crucial
 - V_{BE}: Examination of s₂₁ of Large-signal s-parameter simulation and noise figure (analogous to [Mai+21])

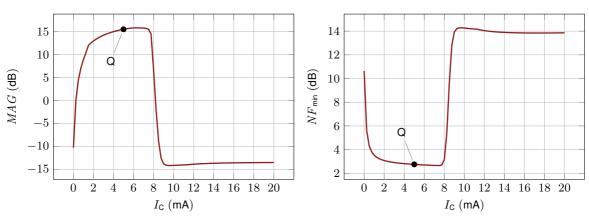
[Mai+21] T. Maiwald et al., "A Broadband Zero-IF Down-Conversion Mixer in 130 nm SiGe BiCMOS for Beyond 5G Communication Systems in D-Band", in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 7, pp. 2277-2281, July 2021

Operating Point: Switching Quad



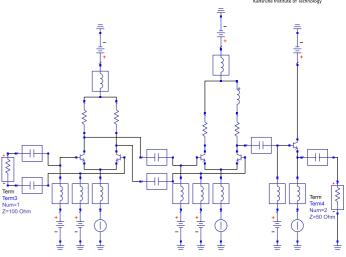
- Plotted for $f_{LO} = 135 \, \text{GHz}, f_{RF} = 140 \, \text{GHz}$
- lacktriangle Double-sideband noise figure NF_{dsb} (direct conversion mixer)
- Chosen operating point: $V_{BE} = 0.8 \, \text{V}$

Operating Point: Transimpedance Amplifier



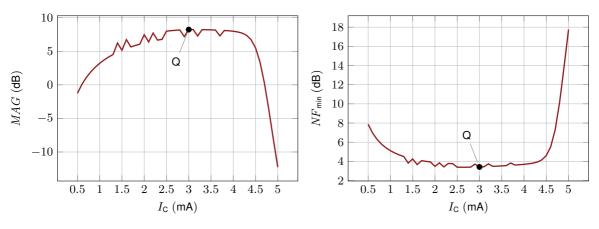
- Operation
 - Conversion of switched current to voltage, amplification
 - Modified Cherry-Hooper topology: decoupling of bandwidth and gain, modification for greater dynamic range
- Determination of operating point
 - Exact value of supply voltage not crucial
 - S-parameter simulation: Examination of maximum available gain (MAG) and minimum noise figure (NF_{min})
 - At this stage: only determination of operating point of bottom transistors

Operating Point: Transimpedance Amplifier



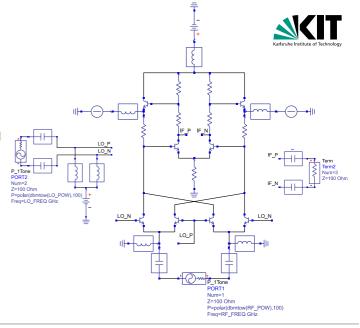
- Plotted for $f_{\mathsf{IF}} = 20\,\mathsf{GHz}$
- Chosen operating point: $I_C = 5 \text{ mA}$ (with multiplier of 10)

Operating Point: Buffer

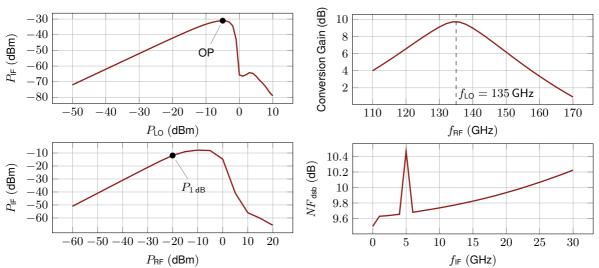


- Operation
 - Amplification of signal
 - Comprises three stages: two differential amplifiers and an emitter follower
- Determination of operating point
 - Exact value of supply voltage not crucial at this point
 - S-parameter simulation: Examination of MAG and NF_{min}
 - Note: Adjustment with respect to linearity at the very end

Operating Point: Buffer

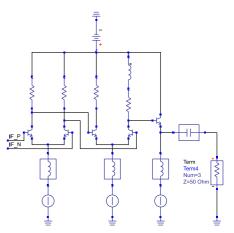


- Plotted for $f_{\rm IF}=20\,{\rm GHz}$
- Chosen operating point: $I_C = 3 \text{ mA}$

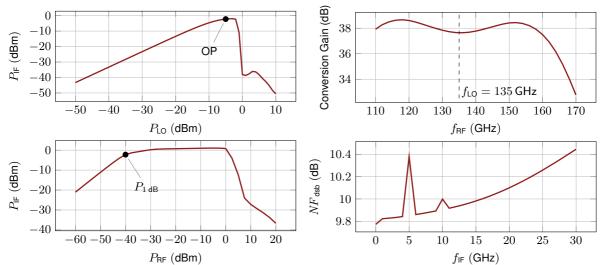

Integration: SQuad & TIA

- DC coupling → Redesign of bias circuitry
- Supply voltage fixed to 2,5 V to not exceed breakdown voltage of transistors
- Examination using Harmonic-Balance simulation:
 - Conversion gain
 - \blacksquare 1 dB compression point ($P_{1 \text{ dB}}$)

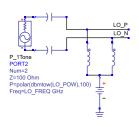
Integration: SQuad & TIA

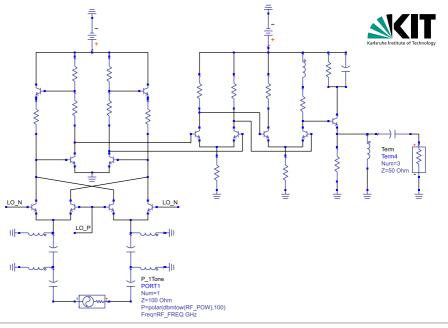


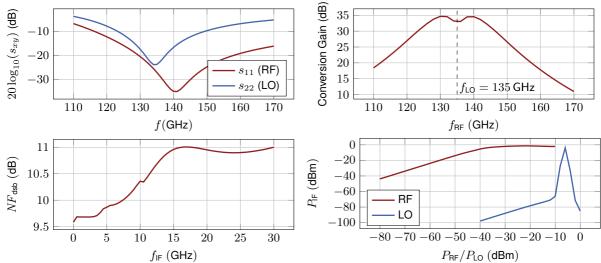
Integration: SQuad, TIA & Buffer



- lacktriangle DC coupling o Redesign of bias circuitry
- Supply voltage fixed to 2,5 V
- Examination using Harmonic-Balance simulation:
 - Conversion gain
 - $\blacksquare 1 \, \mathsf{dB} \; \mathsf{compression} \; \mathsf{point} \; (P_{1 \, \mathsf{dB}})$




Integration: SQuad, TIA & Buffer


Final Circuit

Final Circuit

Overview

Proposed Ideas

Own Simulations

- General structure
 - Removal of g_m stage of Gilbert cell \rightarrow more voltage headroom
 - \blacksquare High bandwidth TIA and inductive peaking \rightarrow high bandwidth
 - lacktriangle Differential to single-ended conversion o dense chip-to-package transition
- Own simulations
 - Better results to be expected (technology with higher f_t , f_{max} , stability not considered)
 - Further investigation needed to determine whether unusual LO power behavior is problematic
 - Maybe better results by using current mirrors to set operating points of buffer instead of resistors
 - Maybe better results by replacement of discrete component matching networks by transmission line based ones
- Applications of this design
 - lacktriangle SiGe HBT technology integrable with CMOS ightarrow scalable, suitable for mixed-signal ICs
 - Ideal for electronic beam stearing in mm-Wave applications (because of small size, moderate noise figure)

Questions

Thank you for your attention!
Any questions?

