%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Own Simulations} \label{sec:Own Simulation} \begin{frame} \frametitle{Design Steps} \begin{enumerate} \item Determination of operating point of individual stages \begin{itemize} \item SQuad \item TIA \item Buffer \end{itemize} \item Integration \begin{itemize} \item SQuad \& TIA \item SQuad, TIA \& Buffer \end{itemize} \item Further iterative optimization of parameters (e.g., determine LO power,\\ increase buffer current for linearity, \ldots) \item Matching of input and output \item Replacement of remaining DC blocks/feeds in bias circuitry \end{enumerate} \end{frame} \begin{frame} \frametitle{Operating Point: Switching Quad} \begin{minipage}{0.5\textwidth} \begin{itemize} \item Operation \begin{itemize} \item Responsible for actual mixing \item Multiplication of RF-signal with square wave $\rightarrow$ generation of mixing products at IF-frequency and harmonics \end{itemize} \end{itemize} \bigskip \begin{itemize} \item Determination of operating point \begin{itemize} \item Exact value of $V_\text{CE}$ not crucial \item $V_\text{BE}$: Examination of $s_\text{21}$ of Large-signal s-parameter simulation and noise figure (analogous to \citereference{Mai+21}) \end{itemize} \end{itemize} \end{minipage}% \begin{minipage}{0.5\textwidth} \centering \begin{figure}[H] \vspace*{-5mm} \hspace*{15mm}% \includegraphics[width=0.83\textwidth]{res/simulation/SQuad_OP_01.pdf} \vspace*{-18mm} \hspace*{-55mm}% \includegraphics[width=0.4\textwidth]{res/simulation/SQuad_OP_02.pdf} \end{figure} \end{minipage} \vspace{4mm} \addreference{Mai+21}{T. Maiwald et al., ``A Broadband Zero-IF Down-Conversion Mixer in 130 nm SiGe BiCMOS for Beyond 5G Communication Systems in D-Band'', in \emph{IEEE Transactions on Circuits and Systems II: Express Briefs}, vol. 68, no. 7, pp. 2277-2281, July 2021} \end{frame} \begin{frame} \frametitle{Operating Point: Switching Quad} \vspace*{-2mm} \begin{figure}[H] \centering \begin{subfigure}{0.5\textwidth} \begin{tikzpicture} \begin{axis}[ width=\textwidth, height=0.75\textwidth, xlabel={$V_\text{BE}\ (\text{V})$}, ylabel={$\mathit{s_\text{21}}\ (\text{dB})$}, ytick={-50,-40,...,0,10}, xtick={0.5,0.6,...,1.2}, grid, ] \addplot+[mark=none, line width=1pt] table[col sep=comma, x=VBE, y=s21] {res/simulation/SQuad_OP_s21_vs_VBE.csv}; \addplot[mark=*] coordinates {(0.8,5.031)} node[pin=-100:{Q}]{} ; \end{axis} \end{tikzpicture} \end{subfigure}% \begin{subfigure}{0.5\textwidth} \begin{tikzpicture} \begin{axis}[ width=\textwidth, height=0.75\textwidth, xlabel={$V_\text{BE}\ (\text{V})$}, ylabel={$\mathit{NF}_\text{dsb}\ (\text{dB})$}, ytick={0,10,...,60}, xtick={0.5,0.6,...,1.2}, grid, ] \addplot+[mark=none, line width=1pt] table[col sep=comma, x=VBE, y=NFdsb] {res/simulation/SQuad_NFdsb.csv}; \addplot[mark=*] coordinates {(0.8,8.607)} node[pin=100:{Q}]{} ; \end{axis} \end{tikzpicture} \end{subfigure} \end{figure} \vspace*{-2mm} \begin{itemize} \item Plotted for $f_\text{LO}=\SI{135}{GHz}, f_\text{RF}=\SI{140}{GHz}$ \item Double-sideband noise figure (direct conversion mixer) \item Chosen operating point: $V_\text{BE} = \SI{0.8}{V}$ \end{itemize} \end{frame} \begin{frame} \frametitle{Operating Point: Transimpedance Amplifier} \begin{minipage}{0.5\textwidth} \begin{itemize} \item Operation \begin{itemize} \item Conversion of switched current to voltage, amplification \item Modified Cherry-Hooper topology: decoupling of bandwidth and gain, modification for greater dynamic range \end{itemize} \end{itemize} \bigskip \begin{itemize} \item Determination of operating point \begin{itemize} \item Exact value of supply voltage not crucial \item S-parameter simulation: Examination of maximum available gain ($\mathit{MAG}$) and minimum noise figure ($\mathit{NF}_\text{min}$) \item At this stage: only determination of operating point of bottom transistors \end{itemize} \end{itemize} \end{minipage}% \begin{minipage}{0.5\textwidth} \vspace*{-6mm} \begin{figure}[H] \centering \hspace*{-8mm} \includegraphics[width=0.83\textwidth]{res/simulation/TIA_OP_01.pdf} \vspace*{-20mm} \hspace*{58mm}% \includegraphics[width=0.33\textwidth]{res/simulation/TIA_OP_02.pdf} \end{figure} \end{minipage} \end{frame} \begin{frame} \frametitle{Operating Point: Transimpedance Amplifier} \begin{figure}[H] \centering \begin{subfigure}{0.5\textwidth} \begin{tikzpicture} \begin{axis}[ width=\textwidth, height=0.75\textwidth, xlabel={$I_\text{C}\ (\text{mA})$}, ylabel={$\mathit{MAG}\ (\text{dB})$}, grid, xtick={0,2,...,20}, ytick={-15, -10, ..., 15}, ] \addplot+[mark=none, line width=1pt] table[col sep=comma, x=IC, y=MaxGain] {res/simulation/TIA_OP_MaxGain_vs_IC.csv}; \addplot[mark=*] coordinates {(5,15.532)} node[pin=-100:{Q}]{} ; \end{axis} \end{tikzpicture} \end{subfigure}% \begin{subfigure}{0.5\textwidth} \begin{tikzpicture} \begin{axis}[ width=\textwidth, height=0.75\textwidth, xlabel={$I_\text{C}\ (\text{mA})$}, ylabel={$\mathit{NF}_\text{min}\ (\text{dB})$}, xtick={0,2,...,20}, ytick={0,2,...,16}, grid, ] \addplot+[mark=none, line width=1pt] table[col sep=comma, x=IC, y=NFmin] {res/simulation/TIA_OP_NFmin_vs_IC.csv}; \addplot[mark=*] coordinates {(5,2.756)} node[pin=100:{Q}]{} ; \end{axis} \end{tikzpicture} \end{subfigure} \end{figure} \begin{itemize} \item Plotted for $f_\text{IF} = \SI{20}{GHz}$ \item Chosen operating point: $I_\text{C} = \SI{5}{mA}$ (with multiplier of $10$) \end{itemize} \end{frame} \begin{frame} \frametitle{Operating Point: Buffer} \begin{minipage}{0.45\textwidth} \begin{itemize} \item Operation \begin{itemize} \item Amplification of signal \item Comprises three stages: two differential amplifiers and an emitter follower \end{itemize} \end{itemize} \bigskip \begin{itemize} \item Determination of operating point \begin{itemize} \item Exact value of supply voltage not crucial at this point \item S-parameter simulation: Examination of $\mathit{MAG}$ and $\mathit{NF}_\text{min}$ \item \textbf{Note}: Adjustment with respect to linearity at the very end \item [TODO] Switch figure with correct one (add peaking inductance) \end{itemize} \end{itemize} \end{minipage}% \begin{minipage}{0.57\textwidth} \vspace*{-5mm} \begin{figure}[H] \hspace*{2mm}% \includegraphics[width=1\textwidth]{res/simulation/Buffer.pdf} \end{figure} \end{minipage} \end{frame} \begin{frame} \frametitle{Operating Point: Buffer} \begin{figure} \centering \begin{subfigure}{0.5\textwidth} \centering \begin{tikzpicture} \begin{axis}[ domain=-5:5, width=\textwidth, height=0.75\textwidth, samples=100, ] \addplot+[mark=none, line width=1pt] {ln(x)}; \end{axis} \end{tikzpicture} \end{subfigure}% \begin{subfigure}{0.5\textwidth} \centering \begin{tikzpicture} \begin{axis}[ domain=-.1:.1, width=\textwidth, height=0.75\textwidth, samples=100, ] \addplot+[mark=none, line width=1pt] {tanh(deg(x))}; \end{axis} \end{tikzpicture} \end{subfigure} \end{figure} \end{frame} \begin{frame} \frametitle{Integration: SQuad \& TIA} \begin{minipage}{0.45\textwidth} \begin{itemize} \item DC coupling $\rightarrow$ Redesign of bias circuitry \item Supply voltage fixed to $\SI{2.5}{\volt}$ to not exceed breakdown voltage of transistors \item Examination using Harmonic-Balance simulation: \begin{itemize} \item Conversion gain \item $\SI{1}{dB}$ compression point ($P_{\SI{1}{dB}}$) \end{itemize} \end{itemize} \end{minipage}% \begin{minipage}{0.6\textwidth} \vspace*{-38mm} \begin{figure}[H] \includegraphics[width=0.67\textwidth]{res/simulation/INT_SQuad_TIA_01.pdf} \vspace*{-50mm} \hspace{-70mm}% \includegraphics[width=0.28\textwidth]{res/simulation/INT_SQuad_TIA_02.pdf} \vspace*{-20mm} \hspace{60mm}% \includegraphics[width=0.22\textwidth]{res/simulation/INT_SQuad_TIA_03.pdf} \end{figure} \end{minipage} \end{frame} \begin{frame} \frametitle{Integration: SQuad \& TIA} \vspace*{-6mm} \begin{figure} \begin{subfigure}{0.5\textwidth} \begin{tikzpicture} \begin{axis}[ width=\textwidth, height=0.5\textwidth, ylabel={Conversion Gain (dB)}, xlabel={$P_\text{LO}\ (\text{dBm})$}, grid, xtick={-50,-40,...,10}, ytick={-40,-30,...,10}, ] \addplot+[mark=none, line width=1pt] table[col sep=comma, x=LOPow, y=ConvGain] {res/simulation/INT_SQuad_TIA_ConvGain_vs_LOPow.csv}; \addplot[mark=*] coordinates {(-5,8.969)} node[pin=-100:{OP}]{} ; \end{axis} \end{tikzpicture} \end{subfigure}% \begin{subfigure}{0.5\textwidth} \begin{tikzpicture} \begin{axis}[ width=\textwidth, height=0.5\textwidth, ylabel={Conversion Gain (dB)}, xlabel={$P_\text{RF}\ (\text{dBm})$}, xtick={-60,-50,...,20}, ytick={-20,-10,...,30}, grid, ] \addplot+[mark=none, line width=1pt] table[col sep=comma, x=RFPow, y=ConvGain] {res/simulation/INT_SQuad_TIA_ConvGain_vs_RFPow.csv}; \node[scol2,circle,fill,inner sep=2pt] at (axis cs:-20,28.073) {}; \addplot[mark=*] coordinates {(-20,28.073)} node[pin=-80:{$P_{\SI{1}{dB}}$}]{} ; \end{axis} \end{tikzpicture} \end{subfigure} \begin{subfigure}{0.5\textwidth} \begin{tikzpicture} \begin{axis}[ width=\textwidth, height=0.5\textwidth, ylabel={Conversion Gain (dB)}, xlabel={$f_\text{RF}\ (\text{GHz})$}, xtick={-110,-100,...,170}, ytick={-10,-8,...,10}, grid, ] \addplot+[mark=none, line width=1pt] table[col sep=comma, x=RFFreq, y=ConvGain] {res/simulation/INT_SQuad_TIA_ConvGain_vs_RFFreq.csv}; \end{axis} \end{tikzpicture} \end{subfigure}% \end{figure} \end{frame} \begin{frame} \frametitle{Integration: SQuad, TIA \& Buffer} \begin{itemize} \item AC coupling $\rightarrow$ No redesign of bias circuitry required \end{itemize} \end{frame} \begin{frame} \frametitle{Integration: SQuad, TIA \& Buffer} \begin{itemize} \item [TODO] Plots \end{itemize} \end{frame} \begin{frame} \frametitle{Final Circuit} \begin{itemize} \item [TODO] A few key points \item [TODO] Circuit diagram \end{itemize} \end{frame} \begin{frame} \frametitle{Final Circuit} \begin{itemize} \item [TODO] 4 Plots of same stuff as in paper \end{itemize} \end{frame} %\begin{frame} % \frametitle{Simulation Setup} % % \begin{figure}[H] % \centering % % \includegraphics[width=0.6\textwidth]{res/simulation/schematic.pdf} % \end{figure} % % \begin{itemize} % \item [TODO] Simulation schematics % \item [TODO] Differences to schematic from paper (if any) % \end{itemize} %\end{frame} % %\begin{frame} % \frametitle{Design Steps} % % \begin{itemize} % \item [TODO] Idea: approach from lecture: first worry about actual circuit, biasing later % \item [TODO] Choice of transistors % \item [TODO] Choice of operating points % \item [TODO] Rest of schematic details (?) % \end{itemize} %\end{frame} % %\begin{frame} % \frametitle{Simulation Results} % % \begin{itemize} % \item [TODO] Simulation results % \item [TODO] Intuitive explanation of results % \end{itemize} %\end{frame} % %\begin{frame} % \frametitle{Comparison with Standard Topology} % % \begin{itemize} % \item [TODO] (Remove if not applicable) % \item [TODO] Comparison of pros and cons of each topology % \item [TODO] Comparison of simulation results % \end{itemize} %\end{frame}