diff --git a/script.md b/script.md index e47da20..3d4ab65 100644 --- a/script.md +++ b/script.md @@ -21,6 +21,8 @@ ### OP: SQuad +1. + ### OP: TIA ### OP: Buffer @@ -31,4 +33,8 @@ ### Final circuit +- Weird behavior of LO curve appeared when lowering SQuad VBE. Lowering VBE + yielded higher conversion gain +- + ## Discussion & Conclusion diff --git a/sections/02_proposed_ideas.tex b/sections/02_proposed_ideas.tex index 8b3c2cb..30e1c4c 100644 --- a/sections/02_proposed_ideas.tex +++ b/sections/02_proposed_ideas.tex @@ -100,7 +100,7 @@ \begin{itemize} \item Usage of switching quad (SQuad) instead of conventional Gilbert cell for more voltage headroom \item Mixer loaded by modified Cherry-Hooper \citereference{CH63} transimpedance amplifier (TIA) - \item Transmission-line based differential L-type matching networks for high bandwidth + \item Transmission line based differential L-type matching networks for high bandwidth \item Signal fed using marchand baluns for high bandwidth \end{itemize} \end{minipage}% diff --git a/sections/03_simulation_results.tex b/sections/03_simulation_results.tex index e1da24c..d58d842 100644 --- a/sections/03_simulation_results.tex +++ b/sections/03_simulation_results.tex @@ -310,23 +310,23 @@ \begin{frame} \frametitle{Integration: SQuad \& TIA} - \vspace*{-6mm} + \vspace*{-4mm} \begin{figure} \begin{subfigure}{0.5\textwidth} \begin{tikzpicture} \begin{axis}[ width=\textwidth, height=0.5\textwidth, - ylabel={Conversion Gain (dB)}, + ylabel={$P_\text{IF}\ (\text{dBm})$}, xlabel={$P_\text{LO}\ (\text{dBm})$}, grid, xtick={-50,-40,...,10}, - ytick={-40,-30,...,10}, + ytick={-80,-70,...,-20}, ] \addplot+[mark=none, line width=1pt] - table[col sep=comma, x=LOPow, y=ConvGain] + table[col sep=comma, x=LOPow, y expr=(\thisrowno{1}-40)] {res/simulation/INT_SQuad_TIA_ConvGain_vs_LOPow.csv}; - \addplot[mark=*] coordinates {(-5,8.969)} node[pin=-100:{OP}]{} ; + \addplot[mark=*] coordinates {(-5,-31.031)} node[pin=-100:{OP}]{} ; \end{axis} \end{tikzpicture} \end{subfigure}% @@ -356,16 +356,16 @@ \begin{axis}[ width=\textwidth, height=0.5\textwidth, - ylabel={Conversion Gain (dB)}, + ylabel={$P_\text{IF}\ (\text{dBm})$}, xlabel={$P_\text{RF}\ (\text{dBm})$}, xtick={-60,-50,...,20}, - ytick={-20,-10,...,30}, + ytick={-60,-50,...,10}, grid, ] \addplot+[mark=none, line width=1pt] - table[col sep=comma, x=RFPow, y=ConvGain] + table[col sep=comma, x=RFPow, y expr=(\thisrowno{1}-40)] {res/simulation/INT_SQuad_TIA_ConvGain_vs_RFPow.csv}; - \addplot[mark=*] coordinates {(-20,28.073)} node[pin=-80:{$P_{\SI{1}{dB}}$}]{} ; + \addplot[mark=*] coordinates {(-20,-11.927)} node[pin=-80:{$P_{\SI{1}{dB}}$}]{} ; \end{axis} \end{tikzpicture} \end{subfigure}% @@ -416,23 +416,23 @@ \begin{frame} \frametitle{Integration: SQuad, TIA \& Buffer} - \vspace*{-6mm} + \vspace*{-4mm} \begin{figure} \begin{subfigure}{0.5\textwidth} \begin{tikzpicture} \begin{axis}[ width=\textwidth, height=0.5\textwidth, - ylabel={Conversion Gain (dB)}, + ylabel={$P_\text{IF}\ (\text{dBm})$}, xlabel={$P_\text{LO}\ (\text{dBm})$}, grid, xtick={-50,-40,...,10}, - ytick={-20,-10,...,40}, + ytick={-60,-50,...,0}, ] \addplot+[mark=none, line width=1pt] - table[col sep=comma, x=LOPow, y=ConvGain] + table[col sep=comma, x=LOPow, y expr=(\thisrowno{1}-40)] {res/simulation/INT_Buffer_ConvGain_vs_LOPow.csv}; - \addplot[mark=*] coordinates {(-5,37.774)} node[pin=-100:{OP}]{} ; + \addplot[mark=*] coordinates {(-5,-2.226)} node[pin=-100:{OP}]{} ; \end{axis} \end{tikzpicture} \end{subfigure}% @@ -458,21 +458,20 @@ \end{subfigure}% \begin{subfigure}{0.5\textwidth} - \hspace{1.5mm} \begin{tikzpicture} \begin{axis}[ width=\textwidth, height=0.5\textwidth, - ylabel={Conversion Gain (dB)}, + ylabel={$P_\text{IF}\ (\text{dBm})$}, xlabel={$P_\text{RF}\ (\text{dBm})$}, xtick={-60,-50,...,20}, - ytick={-10,0,...,40}, + ytick={-50,-40,...,10}, grid, ] \addplot+[mark=none, line width=1pt] - table[col sep=comma, x=RFPow, y=ConvGain] + table[col sep=comma, x=RFPow, y expr=(\thisrowno{1}-40)] {res/simulation/INT_Buffer_ConvGain_vs_RFPow.csv}; - \addplot[mark=*] coordinates {(-40,37.774)} node[pin=-80:{$P_{\SI{1}{dB}}$}]{} ; + \addplot[mark=*] coordinates {(-40,-2.226)} node[pin=-80:{$P_{\SI{1}{dB}}$}]{} ; \end{axis} \end{tikzpicture} \end{subfigure}% @@ -514,7 +513,7 @@ \begin{frame} \frametitle{Final Circuit} - \vspace*{-6mm} + \vspace*{-4mm} \begin{figure} \begin{subfigure}{0.5\textwidth} \begin{tikzpicture} @@ -582,20 +581,20 @@ \begin{axis}[ width=\textwidth, height=0.5\textwidth, - ylabel={Conversion Gain (dB)}, + ylabel={$P_\text{IF}\ (\text{dBm})$}, xlabel={$P_\text{RF} / P_\text{LO} \ (\text{dBm})$}, legend pos = south west, xtick = {-90,-80,...,10}, - ytick = {-60,-40,...,40}, + ytick = {-100,-80,...,0}, grid, ] \addplot+[mark=none, line width=1pt] - table[col sep=comma, x=RFPow, y=ConvGain] + table[col sep=comma, x=RFPow, y expr=(\thisrowno{1}-40)] {res/simulation/final_ConvGain_vs_RFPow.csv}; \addlegendentry{RF} \addplot+[mark=none, line width=1pt] - table[col sep=comma, x=LOPow, y=ConvGain] + table[col sep=comma, x=LOPow, y expr=(\thisrowno{1}-40)] {res/simulation/final_ConvGain_vs_LOPow.csv}; \addlegendentry{LO} \end{axis} diff --git a/sections/05_conclusion.tex b/sections/05_conclusion.tex index 40dacca..c920a99 100644 --- a/sections/05_conclusion.tex +++ b/sections/05_conclusion.tex @@ -12,15 +12,18 @@ \item Differential to single-ended conversion $\rightarrow$ dense chip-to-package transition \end{itemize} \bigskip -% \item Own simulations -% \begin{itemize} -% \item Much higher conversion gain $\leftarrow$ technology with higher $f_\text{t}$ and $f_\text{max}$, no stability considerations -% \end{itemize} -% \bigskip + \item Own simulations + \begin{itemize} + \item Better results to be expected (technology with higher $f_\text{t}$, $f_\text{max}$, stability not considered) + \item Further investigation needed to determine whether unusual LO power behavior is problematic + \item Maybe better results by using current mirrors to set operating points of buffer instead of resistors + \item Maybe better results by replacement of discrete component matching networks by transmission line based ones + \end{itemize} + \bigskip \item Applications of this design \begin{itemize} - \item SiGe HBT technology integrable with CMOS $\rightarrow$ scalable, suitable for mixed-signal ICs - \item Ideal for electronic beam stearing in mm-Wave applications + \item SiGe HBT technology integrable with CMOS $\rightarrow$ scalable, suitable for mixed-signal ICs + \item Ideal for electronic beam stearing in mm-Wave applications (because of small size, moderate noise figure) \end{itemize} \end{itemize} \end{frame}