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Quantum Computing AT

m Simulating quantum systems on classical hardware is exponentially complex
— Can't we use quantum hardware to simulate quantum systems? [Fey82]

m Some problems that are “hard” to solve on classical computers we can “easily” solve on quantum
computers [Prel8g]

We are here

l

A
’0 '00,
K50 X %}"' S5
X ‘x:x‘x’ 5% mooo.ooooo »
SRR —E
"c 2 KRR 550 0‘0‘
QLRSS L

# R
® ® ® °® °® ° >
54 102 103 104 10° 10¢ # physical qubits
Beyond Logical qubit  1long-lived Tileable module Engineering Error-corrected
classical prototype logical qubit (logical gate) scaleup  quantum computer
v v
M1(2019) M2 (2023) M3 (2025+) M4 M5 Mé

Figure: Google Quantum Al's quantum computing roadmap [Goo].

[Fey82] R. P. Feynman, “Simulating physics with computers,” en, International Journal of Theoretical Physics, vol. 21, no. 6, pp. 467-488, Jun. 1982,
[Prel8] J. Preskill, “Quantum Computing in the NISQ era and beyond,” en-GB, Quantum, vol. 2, p. 79, Aug. 2018,
[Goo]  Google Quantum Al, Quantum Computing Roadmap, en. Accessed: Jan. 28, 2026.
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The Need for Quantum Error Correction AT

m Errors during quantum computation are inevitable because quantum systems are fragile
m We want to interact with the quantum state but not disturb it

m We employ more physical qubits to introduce redundancy and use the resulting physical state to
represent the logical state [Rof19]

m [ypical scales
m IBM recently introduced a scheme encoding 12 logical qubits in 288 physical ones [Bcc+24]
= The physical error rate is typically assumed to be 107 for simulations (e.g., [Bcc 24])
» Decoding has to happen with ultra-low latency to avoid the backlog problem (about 1 us per
data extraction round) [csB+24]

[Rof19] J. Roffe, “Quantum error correction: An introductory guide,” Contemporary Physics, vol. 60, no. 3, pp. 226—245, Jul. 2019,

[BCG24] S. Bravyi et al., “High-threshold and low-overhead fault-tolerant quantum memory,” Nature, vol. 627, no. 8005, pp. 778-782, Mar. 2024,

[CSBT24] L. Caune et al., Demonstrating real-time and low-latency quantum error correction with superconducting qubits, Oct. 2024. Accessed: Jan. 28,
2026.
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Peculiarities of the Quantum Setting AT

m Quantum error correction (QEC) is actually able to protect the actual quantum state
m Similar to bits and gates, quantum systems are built on top of qubits and quantum gates
m We have to consider phase flip errors in addition to bit flip errors [rof19]

0) = [1) 0) = 10) 0) = [1)
1) = 10) 1) = —=[1) 1) = —710)
(a) Bit flip (X) error (b) Phase flip (Z) error (c) Y error: Combination of X and Z

m Measuring the qubits directly destroys superpositions and entanglement
— We generally only work with the syndrome, which we can measure [nci0]

m Sometimes superposition permits multiple equivalent solutions to the decoding problem (quantum
degeneracy) [RwBc20]

[NC10] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition, en. Cambridge: Cambridge
University Press, Dec. 2010, 1SBN: 978-0-511-97666-7.
[Rof19] J. Roffe, “Quantum error correction: An introductory guide,” Contemporary Physics, vol. 60, no. 3, pp. 226—245, Jul. 2019,

[RWBC20] J. Roffe, D. R. White, S. Burton, and E. Campbell, “Decoding across the quantum low-density parity-check code landscape,” Physical Review
Research, vol. 2, no. 4, p. 043423, Dec. 2020.
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Stabilizer and Calderbank Shor Steane Codes AT

m Stabilizer codes [ncio]
m [he code space can implicitly be defined using stabilizer generators
m We can represent them using parity check matrices
= Quantum analog of linear codes

m Calderbank Shor Steane (CSS) codes [ncio)
m Subset of stabilizer codes
m Can correct X and Z errors independently
m Described using two separate parity check matrices Hy and Hjy
= Can be constructed from two binary linear codes C; |n, k1] and Cs [n, ko] with Co C &4

[NC10] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition, en. Cambridge: Cambridge
University Press, Dec. 2010, 1SBN: 978-0-511-97666-7.
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Syndrome Extraction Circuits

KT

m We entangle the state with ancilla qubits to perform syndrome measurements [nci0]

m Example: The 3-qubit repetition code!
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[NC10] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition, en. Cambridge: Cambridge

University Press, Dec. 2010, 1SBN: 978-0-511-97666-7.

INote that, for simplicity, this chosen example is a code that is only able to correct X errors (bit flips)
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Fault Tolerance AT

m The quantum gates we use for syndrome extraction are faulty themselves
— We need fault-tolerant QEC

m A QEC procedure is said to be fault tolerant if, in addition to correcting input errors, the spread of
internal errors is sufficiently limited [pTTBE25]

Input State QEC Output State
Input Internal  _ | Output
Errors Errors Errors

Figure: Overview of the flow of errors in a QEC system. Adapted from [DTTBE25].

m We have to modify the syndrome extraction circuitry to be fault tolerant (e.g., by using specially
prepared multi-qubit states for each ancilla [sho97])
m We generally perform multiple rounds of syndrome extraction

[Sho97] P. W. Shor, “Fault-tolerant quantum computation,”, Mar. 1997,
[DTTBE25] P.-J. H. S. Derks, A. Townsend-Teague, A. G. Burchards, and J. Eisert, “Designing fault-tolerant circuits using detector error models,”, Oct.
2025,
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The Measurement Syndrome Matrix | AT

m Each column of the measurement syndrome matrix €2 corresponds to a measurement pattern an
error produces [DTTBE25]

—{ E,
m Example: 3-qubit repetition code ) B
. . . 11
(Only bit flips on data qubits)
—{ F,
/1 10 ]O>A1 i <
011
110 ’O>A2 &0 <
) =
011 0) ., —o—0 <
3
1 10
\O 1 1) ‘O>A4 e <
‘0>A5 — <
|O>A6 S—— <
[DTTBE25] P.-J. H. S. Derks, A. Townsend-Teague, A. G. Burchards, and J. Eisert, “Designing fault-tolerant circuits using detector error models,”, Oct.
2025,
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The Measurement Syndrome Matrix | AT

m Each column of the measurement syndrome matrix €2 corresponds to a measurement pattern an

error produces [DTTBE25] {'g}_ . .
m Example: 3-qubit repetition code ) {E
(Only bit flips on data qubits) :
1B,
/1 10 |O>A1 >— X
011
o 110 |O>A2 e X
1011 0), —bd P
1 1 O A3 J T
\O 1 1) ‘O>A4 &0 X
‘0>A5 S— X
‘0>A6 S e

[DTTBE25] P.-J. H. S. Derks, A. Townsend-Teague, A. G. Burchards, and J. Eisert, “Designing fault-tolerant circuits using detector error models,”, Oct.
2025,
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The Measurement Syndromemani Matrix i AN {]]

m Each column of the measurement syndrome matrix €2 corresponds to a measurement pattern an
error produces [DTTBE25]

Example: 3-qubit repetition cod = - =
m Example: 5-qubit repetition code
P 3 : P : ‘¢> —1& L En
(Phenomenological noise [pTTBE25))
— E E; ID)
(110100000000000 0) A, S Byl
011010000000000
o_ | 11oo0rtot000000 10) a, 0 B>
1 011000110100000 0
110001100011010) 0)a, —o- By~
011000110001101 ‘O>A o b Bl —<
4
‘O>A5 &b B3 H =<
\O}AG &b Byl =<
[DTTBE25] P.-J. H. S. Derks, A. Townsend-Teague, A. G. Burchards, and J. Eisert, “Designing fault-tolerant circuits using detector error models,”, Oct.
2025,
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The Measurement Syndromemani Matrix i AN {]]

m Each column of the measurement syndrome matrix €2 corresponds to a measurement pattern an

eError p:odl;ces l[)l.)TTBE25]. | d 1B {)3:%_ Bl
B Example: >-qubit repetition code
i i : P : ‘¢> — £ Ly Eu
(Phenomenological noise [pTTBE25))
—E2 E7 E12
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10110001101 00000
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|O>A5 O—D EisH— =X
|O>A6 &——| B H—=><
[DTTBE25] P.-J. H. S. Derks, A. Townsend-Teague, A. G. Burchards, and J. Eisert, “Designing fault-tolerant circuits using detector error models,”, Oct.
2025,
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The Measurement Syndromemani Matrix i AN {]]

m Each column of the measurement syndrome matrix €2 corresponds to a measurement pattern an
error produces [DTTBE25]

Example: 3-qubi ition cod = MEE’ -
B CExXample: >-qubit repetition code
P 3 : P : ‘¢> — £ X 1 Eu —1
(Phenomenological noise [pTTBE25)) Hes
— E» Er Eio
(110100000000000 0) A, o By =<
011010000000000
o_ | 11ooo1t01000000 [ [0 o0 B>
1 011000110100000 0
\110001100011010) 0)p, — By~~~
011000110001101
\O>A4 1 Ey———>x
‘O>A5 — EjzH-=>x
|O>A6 o—e— By —H~ =X
[DTTBE25] P.-J. H. S. Derks, A. Townsend-Teague, A. G. Burchards, and J. Eisert, “Designing fault-tolerant circuits using detector error models,”, Oct.
2025,
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The Detector Error Matrix | AT

m A detector is a parity constraint on a set of measurement outcomes [DTTBE25]

m Each column of the detector error matrix H corresponds to a detector pattern an error produces

m We can mitigate the propagation of errors into subsequent rounds by XORing the measurements,
i.e., defining detectors appropriately; this is equivalent to row additions

> Dy
L= D, (110100000000000
— - 011010000000000
i 3 | 000101101000000
= D, “|000010110100000
000000001011010
1 Ds \000000000101101)
== D

[DTTBE25] P.-J. H. S. Derks, A. Townsend-Teague, A. G. Burchards, and J. Eisert, “Designing fault-tolerant circuits using detector error models,”, Oct.
2025,

12 /24 Tsouchlos: Fault Tolerant Quantum Error Correction Communications Engineering Lab (CEL) %@:



The Detector Error Matrix |l AT

m Visualization of general process

) | SE - SEy— SEs—|SE,

D, |Dy |Ds] |D;

m E.g., for bivariate bicycle (BB) codes, the resulting detector error matrix under circuit-level noise
has the form [ccr24]

(HiH, 0 0 0 0 -
0 H,HyH 0 0
0 0 0 H, H, H,
0 0 0 0 0 H,
X y

[GCR24] A. Gong, S. Cammerer, and J. M. Renes, Toward Low-latency Iterative Decoding of QLDPC Codes Under Circuit-Level Noise, en, Mar. 2024.
Accessed: Nov. 24, 2025.
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Noise Model Types AN[{]]

m T he noise model assigns a likelihood to the occurrence of each error

m T he depolarizing channel considers [nc10]

m X, Y or Z errors on the data qubits _

m Phenomenological noise considers [DTTBE25] ) -
m X errors on data qubits before each :
measurement round ]O>A1 I led 1o ==
m X errors on measurement outcomes ]O> | T o=
A, o] o

m Circuit-level noise considers [DTTBE25]

m X, Y or Z errors after state preparation Figure: Circuit-level noise model for the
» n-qubit X, Y or Z errors after any n-qubit gate 3-qubit repetition code (for X errors).

m X errors on measurement outcomes

[NC10] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition, en. Cambridge: Cambridge
University Press, Dec. 2010, 1SBN: 978-0-511-97666-7.

[DTTBE25] P.-J. H. S. Derks, A. Townsend-Teague, A. G. Burchards, and J. Eisert, “Designing fault-tolerant circuits using detector error models,”, Oct.
2025,
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Decoding using Detector Error Models ST

m A detector error model (DEM) combines a detector error matrix and a noise model
m When employing belief propagation (BP), the syndrome-based variant must be used [BBa“15]
m T he likelihoods of different error locations can be used as priors for decoding

m Challenges

m Repeated syndrome measurements come with increased decoding complexity [cGcRr24]
m Degeneracy and short cycles lead to degraded performance of BP [BBa+15]

[BBA*15] Z. Babar et al., “Fifteen Years of Quantum LDPC Coding and Improved Decoding Strategies,” IEEE Access, vol. 3, pp. 2492-2519, 2015,
[GCR24]  A. Gong, S. Cammerer, and J. M. Renes, Toward Low-latency Iterative Decoding of QLDPC Codes Under Circuit-Level Noise, en, Mar. 2024.
Accessed: Nov. 24, 2025.
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Addressing the Challenges AKIT

m Many window-based approaches exist to combat the decoding complexity
s Parallel decoding of syndromes [sBB+23]
s Using sliding windows [HP23] [GCR24]
m To deal with the degraded BP performance, it is usually modified or extended
m Ordered statistics decoding (OSD) post-processing [rwBc20]
m Guided decimation [GcRr24]
m Neural approaches [kL22] [MsLS25]
m Ensemble decoding [kswB2s]

[RWBC20] J. Roffe, D. R. White, S. Burton, and E. Campbell, “Decoding across the quantum low-density parity-check code landscape,” Physical Review
Research, vol. 2, no. 4, p. 043423, Dec. 2020.

[KL22] K.-Y. Kuo and C.-Y. Lai, “Exploiting degeneracy in belief propagation decoding of quantum codes,” en, npj Quantum Information, vol. 8,
no. 1, p. 111, Sep. 2022,

[HP23] S. Huang and S. Puri, “Improved Noisy Syndrome Decoding of Quantum LDPC Codes with Sliding Window,"”, Nov. 2023,

[SBB+23] L. Skoric et al., “Parallel window decoding enables scalable fault tolerant quantum computation,” en, Nature Communications, vol. 14, no. 1,
p. 7040, Nov. 2023,

[GCR24] A. Gong, S. Cammerer, and J. M. Renes, Toward Low-latency Iterative Decoding of QLDPC Codes Under Circuit-Level Noise, en, Mar. 2024.
Accessed: Nov. 24, 2025.

[MSLS25]  S. Miao, A. Schnerring, H. Li, and L. Schmalen, “Quaternary Neural Belief Propagation Decoding of Quantum LDPC Codes with Overcomplete
Check Matrices,” IEEE Access, vol. 13, pp. 25637-25649, Feb. 2025,

[KSWB25] S. Koutsioumpas, H. Sayginel, M. Webster, and D. E. Browne, “Automorphism Ensemble Decoding of Quantum LDPC Codes," en, Mar. 2025
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Sliding-Window Decoding N ]

m [ he sliding window approach taken in [ccr24] resembles a spatially coupled low density parity check
(SC-LDPC) code decoder

m However, they don't pass soft information between windows (only update of syndrome based on
hard decision in previous window)

Hy,H, 0 0 0 O € S1 H, H, \
H,|H, H,
0 H2 HO H1 0 0 E = S9 o, ' H
0 0 0 HH)H 2 0
2 1o I1; €5 S3 H, H, H,
sh = s, + H)é, \ )
(a) Equations for the decoding of the first window (b) Visualization of sliding window procedure

m They try BP + OSD and a modification of BP with guided decimation

[GCR24] A. Gong, S. Cammerer, and J. M. Renes, Toward Low-latency lterative Decoding of QLDPC Codes Under Circuit-Level Noise, en, Mar. 2024,
Accessed: Nov. 24, 2025.
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Proposed Research AKIT

m Research gap

m Existing literature into circuit-level noise fails to properly consider the SC-LDPC like structure
of the detector error matrix

m Proposed Methodology

= Adapt modified guided decimation decoder from [ccr24] to pass soft information

= Investigate performance of different modifications of BP for "inner decoder" (e.g., quaternary
neural BP [msLs2s))

[GCR24]  A. Gong, S. Cammerer, and J. M. Renes, Toward Low-latency lIterative Decoding of QLDPC Codes Under Circuit-Level Noise, en, Mar. 2024,

Accessed: Nov. 24, 2025.

[MSLS25] S. Miao, A. Schnerring, H. Li, and L. Schmalen, “Quaternary Neural Belief Propagation Decoding of Quantum LDPC Codes with Overcomplete
Check Matrices,” IEEE Access, vol. 13, pp. 2563725649, Feb. 2025,

19/24 Tsouchlos: Fault Tolerant Quantum Error Correction Communications Engineering Lab (CEL) %@s



Overview
- Introduction to Quantum Error Correction
- Fault Tolerance and Detector Error Models

- Research Gap

- Simulation Methodology

The Code and Other Parameters
Proposed Methodology




Memory and Stability experiments N ]

m What is a memory experiment? Communications Engineering view (what are my inputs and
outpus? What do | expect?)

m What is a stability experiment?
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Noise Models and Figures of Merit AIT

m For circuit-level noise, often, all error probabilities are set to the same value for simulations [FsGo9]

m There are other approaches (e.g., SDMB noise, S| noise) [pTTBE25]

m Footprint plots
m Other figure of merit (Look into ECCentric?)

[DTTBE25] P.-J. H. S. Derks, A. Townsend-Teague, A. G. Burchards, and J. Eisert, “Designing fault-tolerant circuits using detector error models,”, Oct.

2025,
[FSGO09] A. G. Fowler, A. M. Stephens, and P. Groszkowski, “High-threshold universal quantum computation on the surface code,” Physical Review A,

vol. 80, no. 5, p. 052312, Nov. 2009,
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Proposed Simulation Methodology N ]

m Noise model

m Memory or stability experiment

m Figure of merit: Footprint plot

m Comparison with BB code also simulated by [ccr24]
m Comparison with surface code

[GCR24] A. Gong, S. Cammerer, and J. M. Renes, Toward Low-latency lIterative Decoding of QLDPC Codes Under Circuit-Level Noise, en, Mar. 2024.
Accessed: Nov. 24, 2025.
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Questions ST

Thank you for your attention!
Any questions?
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System Level Overview N ]

Quantum program | ¢>

Main control unit (MCU)

Quantum instruction Logical measurement results

Encoding
Instruction decoding & Syndrome decoding unit |¢>
dispatching unit(IDDU) (SDU) € |¢>
Pulse-level instruction Measurement results Quantum Channel Syndrome Extraction
ey 2
: &
Reverse Operation Syndrome Decoder
Quantum hardware (c:’g |¢>
(a) Schematic workflow of surface code quantum (b) Block diagram of QEC using stabilizer codes [MsLs25].

computation [zzC*23].

[ZZC*23] F. Zhang et al., “A Classical Architecture for Digital Quantum Computers,” ACM Transactions on Quantum Computing, vol. 5, no. 1,
3:1-3:24, Dec. 2023,

[MSLS25] S. Miao, A. Schnerring, H. Li, and L. Schmalen, “Quaternary Neural Belief Propagation Decoding of Quantum LDPC Codes with Overcomplete
Check Matrices,” IEEE Access, vol. 13, pp. 25637-25 649, Feb. 2025,
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