\documentclass[overviewatsection, showsubsectionsatfirstoverview]{CELbeamer} % % % CEL Template % % \newcommand{\templates}{preambles} \input{\templates/packages.tex} \input{\templates/macros.tex} \grouplogo{CEL_logo.pdf} \groupname{Communications Engineering Lab (CEL)} \fundinglogos{} % % % Document setup % % \usepackage{tikz} \usepackage{tikz-3dplot} \usetikzlibrary{spy, external, intersections, positioning} % \ifdefined\ishandout\else % \tikzexternalize % \fi \usepackage{pgfplots} \pgfplotsset{compat=newest} \usepgfplotslibrary{fillbetween} \usepgfplotslibrary{groupplots} \usepackage{enumerate} \usepackage{listings} \usepackage{subcaption} \usepackage{bbm} \usepackage{multirow} \usepackage{xcolor} \usepackage{amsmath} \usepackage{graphicx} \usepackage{calc} \usepackage{amssymb} \usepackage{acro} \usepackage{braket} \usepackage{qcircuit} \title{Fault Tolerant Quantum Error Correction} \subtitle{Master's Thesis Midterm Presentation} \author[Tsouchlos]{Andreas Tsouchlos} \date[]{February 5th, 2026} \DeclareFieldFormat{note}{} \DeclareFieldFormat{issn}{} \DeclareFieldFormat{url}{} \DeclareFieldFormat{doi}{} \DeclareFieldFormat[article,book,inproceedings]{urldate}{} \addbibresource{MA.bib} % % % Custom commands % % \newcommand{\red}[1]{\textcolor{red}{#1}} \newcommand{\res}{src/midterm_presentation/res} % % % Acronyms % % \DeclareAcronym{qec}{ short=QEC, long=quantum error correction } \DeclareAcronym{css}{ short=CSS, long=Calderbank Shor Steane } % % % Document body % % \begin{document} \begin{frame}[title white vertical, picture=images/IMG_7801-cut] \titlepage \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Introduction to Quantum Error Correction} \label{sec:Introduction to Quantum Error Correction} %%%%%%%%%%%%%%%% \subsection{Motivation} \label{subsec:Motivation} \begin{frame} \frametitle{Quantum Computing} % Related interesting stuff % - Gidney estimates we need 1399 (?) logical qubits to factor a 2048 % bit RSA integer % - He goes on to estimate that to factor such an integer in less % than a week would require around a million physical qubits % [How to factor 2048 bit RSA integers with less than a million % noisy qubits] \vspace*{-15mm} \begin{itemize} \item Simulating quantum systems on classical hardware is exponentially complex \\ $\rightarrow$ Can't we use quantum hardware to simulate quantum systems? \citereference{feynman_simulating_1982} \item Some problems that are ``hard'' to solve on classical computers we can ``easily'' solve on quantum computers \citereference{preskill_quantum_2018} \end{itemize} \vspace*{-5mm} \begin{figure}[H] \centering \includegraphics[scale=0.43]{res/google_roadmap.png} \vspace*{-3mm} \caption{ Google Quantum AI's quantum computing roadmap \citereference{google_quantum_ai_quantum_nodate}. } \end{figure} \vspace*{3mm} \addreferences {feynman_simulating_1982} {preskill_quantum_2018} {google_quantum_ai_quantum_nodate} \stopreferences \end{frame} % TODO: Where should I quote Preskill? There are multiple bullet % points with info taken from his work \begin{frame} \frametitle{The Need for Quantum Error Correction} \vspace*{-17mm} % Related interesting stuff % - Qubits differ from bits in that they can be in superpositions % and be entangled with one another % - Quantum computers derive their strenght from the exponential % scaling of the state-space because of the way the information is % encoded % - Note that while a physical error rate of 10^{-3} may seem ok, % we need a couple trillion operations (~ 10^{13}) to factor a % 2048 bit RSA integer % [How to factor 2048 bit RSA integers with less than a million % noisy qubits] % - The "physical error rate" is really the value all error rates % in the system are set to for circuit level noise simulations % [High-threshold universal quantum computation on the surface code] % - The backlog problem is the fact that an increasing backlog of % syndrome data will lead to an exponential slowdown during the % computation \begin{itemize} \item Quantum computers represent information through correlations of qubits, not their values \\ directly \citereference{preskill_quantum_2018} \item We want to not disturb the quantum state but need to interact with the system $\rightarrow$ Protect the state with \ac{qec} \item We employ more physical qubits to introduce redundancy and use the resulting \emph{physical} state to represent the \emph{logical} state \citereference{roffe_quantum_2019} \vspace*{8mm} \item Typical scales \begin{itemize} \item IBM recently introduced a scheme encoding $12$ logical qubits in $288$ physical ones \citereference{bravyi_high-threshold_2024} \item The physical error rate is typically assumed to be $10^{-3}$ for simulations (e.g., \citereference{bravyi_high-threshold_2024}) \item Decoding has to happen with ultra-low latency to avoid the backlog problem (about $\SI{1}{us}$ per data extraction round) \citereference{caune_demonstrating_2024} % \citereference{terhal_quantum_2015} \end{itemize} \end{itemize} \vspace*{7mm} \addreferences % {terhal_quantum_2015} {preskill_quantum_2018} {roffe_quantum_2019} {bravyi_high-threshold_2024} {caune_demonstrating_2024} \stopreferences \end{frame} %%%%%%%%%%%%%%%% \subsection{Fundamentals of Quantum Error Correction} \label{subsec:Fundamentals of Quantum Error Correction} % TODO: Is this all of this really necessary? \begin{frame} \frametitle{Peculiarities of the Quantum Setting} \vspace*{-5mm} % Related interesting stuff % - No cloning theorem -> Not replication of state, protection % through further entanglement % - States are superpositions -> We theoretically need to be able % to correct infinitely many different types of errors. Luckily, % it turns out that in actual fact we only really need to correct % two [Gottesman's Thesis] % - Mention that kets are just vectors, used here to represent the state % - There are actually infinitely many different errors that can % happen, but we can digitize them and only need to consider X and Z % - Not only do we only care about the coset, we specifically % don't want to know more than the syndrome can tell us because % that would mean that "we collapse the quantum mechanical state too % much" \begin{itemize} \item As mentioned earlier, \ac{qec} is actually able to protect the quantum state with all its correlations \item We have to consider phase flip errors in addition to bit flip errors \citereference{roffe_quantum_2019} \vspace*{-10mm} \begin{figure}[H] \centering \begin{subfigure}{0.5\textwidth} \centering \begin{align*} \ket{0} &\rightarrow \ket{1} \\ \ket{1} &\rightarrow \ket{0} \end{align*} \caption{Bit flip (X) error} \end{subfigure}% \begin{subfigure}{0.5\textwidth} \centering \begin{align*} \ket{0} &\rightarrow \phantom{-}\ket{0} \\ \ket{1} &\rightarrow -\ket{1} \end{align*} \caption{Phase flip (Z) error} \end{subfigure} \end{figure} \item Measuring the qubits directly destroys superpositions and entanglement \\ $\rightarrow$ We generally only work with the syndrome, which we can measure \citereference{nielsen_quantum_2010} \item We don't care about restoring the specific codeword, only finding the coset it's in \end{itemize} \vspace*{15mm} \addreferences {nielsen_quantum_2010} {roffe_quantum_2019} \stopreferences \end{frame} \begin{frame} \frametitle{Stabilizer and Calderbank Shor Steane Codes} \vspace*{-5mm} % Related interesting stuff % - Using stabilizers to describe quantum codes is a bit like % using parity check equations to describe classical codes % -> stabilizer codes are the quantum analog of binary linear codes % - For CSS codes, "the parity checks for the X errors and the % parity checks for the Z errors can be represented independently % of one another" \begin{itemize} \item Stabilizer codes \citereference{nielsen_quantum_2010} \begin{itemize} \item The code space can implicitly be defined using \emph{stabilizer generators} \item We can represent them using parity check matrices \item Quantum analog of linear codes \end{itemize} \vspace*{10mm} \item \Ac{css} codes \citereference{nielsen_quantum_2010} \begin{itemize} \item Subset of stabilizer codes \item Can correct X and Z errors independently \item Described using two separate parity check matrices $\bm{H}_\text{X}$ and $\bm{H}_\text{Z}$ \item Can be constructed from two binary linear codes $\mathcal{C}_1 \left[ n, k_1 \right]$ and $\mathcal{C}_2 \left[ n, k_2 \right]$ with $\mathcal{C}_2 \subset \mathcal{C}_1$ \end{itemize} \vspace*{10mm} \item \red{Do I need to go more in depth for either stabilizer codes or CSS codes?} \end{itemize} \vspace*{10mm} \addreferences {nielsen_quantum_2010} \stopreferences \end{frame} % TODO: Do I need to show what the syndrome extraction circuitry for % Z errors looks like? \begin{frame} \frametitle{Syndrome Extraction Circuits} \vspace*{-16mm} \begin{itemize} \item We entangle the state with \emph{ancilla qubits} to perform syndrome measurements \citereference{nielsen_quantum_2010} \item Example: The 3-qubit repetition code% \footnote { Note that, for simplicity, this chosen example is a code that is not only able to correct X errors (bit flips) } % \red{Do I need to show what the syndrome extraction circuitry for Z errors looks like?} \end{itemize} \vspace*{-10mm} \begin{align*} \bm{H} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \end{align*} \vspace*{5mm} \begin{figure}[H] \centering \mbox{ % tex-fmt: off \Qcircuit @C=1em @R=.7em { & & \ctrl{3} & \qw & \qw & \qw & \qw & \qw \\ \ket{\psi}_\text{L} & & \qw & \ctrl{2} & \ctrl{3} & \qw & \qw & \qw \\ & & \qw & \qw & \qw & \ctrl{2} & \qw & \qw \\ \ket{0}_{\text{A}_1} & & \targ & \targ & \qw & \qw & \meter & \\ \ket{0}_{\text{A}_2} & & \qw & \qw & \targ & \targ & \meter & } % tex-fmt: on } \vspace*{5mm} \caption{Syndrome extraction circuit for the 3-qubit repetition code} \end{figure} % \vspace*{5mm} \vspace*{-2mm} \addreferences {nielsen_quantum_2010} \stopreferences \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Fault Tolerance and Detector Error Models} \label{sec:Fault Tolerance and Detector Error Models} %%%%%%%%%%%%%%%% \subsection{Fault Tolerance} \label{subsec:Fault Tolerance} \begin{frame} \frametitle{Fault Tolerance} \begin{itemize} \item Quantum gates are faulty $\rightarrow$ we need QEC \\ But we do QEC with faulty gates $\rightarrow$ we need fault tolerant QEC % \footnote{ Designing fault-tolerant circuits using detector error models - Gong et al, Section 4.1 } \item We generally do multiple rounds of syndrome extraction \item The Threshold theorem \setcounter{footnote}{0} \item Definition of fault tolerance \footnotemark \item \red{Different approaches to fault tolerance?} \end{itemize} \end{frame} % TODO: Where to we introduces the different kinds of noise models? \begin{frame} \frametitle{Noise models} \begin{itemize} \item The depolarizing channel \item Phenomenological noise \item Circuit-level noise (we generally have all error probabilities equal the same value \\ for simulations \citereference{fowler_high-threshold_2009}) \end{itemize} \vspace*{15mm} \addreferences {fowler_high-threshold_2009} \stopreferences \end{frame} %%%%%%%%%%%%%%%% \subsection{Detector Error Models} \label{subsec:Detector Error Models} \begin{frame} \frametitle{Detector Error Models} \begin{itemize} \item Idea: Go "one layer of abstraction higher" \\ $\rightarrow$ Redefine syndrome and create new PC matrix from that \end{itemize} \end{frame} \begin{frame} \frametitle{Example: 3-Qubit Repetition Code Detector\\ Error Model for Circuit Level Noise} \begin{itemize} \item New Syndrome Extraction Circuitry \red{Is a repetition of the old circuitry needed?} \item New parity check matrix \item Highlighting of the SC-LDPC-code-like structure \end{itemize} \end{frame} \begin{frame} \frametitle{Challenges} \begin{itemize} \item \red{Multiple different errors are summarized $\rightarrow$ short cycles \& degeneracy} \footnote{ \texttt{ \red{https://www.math.cit.tum.de/fileadmin/w00ccg/math/\_my\_direct\_uploads/Dan\_Browne.pdf} } } \\ \red{$\rightarrow$ We generally don't use "normal BP" (BP + OSD, BPGD, etc.)} \end{itemize} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{State of the Art and Research Gap} \label{sec:State of the Art and Research Gap} %%%%%%%%%%%%%%%% \subsection{State of the Art} \label{subsec:State of the Art} \begin{frame} \frametitle{Sliding Window Decoding} \begin{itemize} % TODO: Do I have to explain BP? \item \red{Do I have to explain BP} \item Give overview of existing research \item Explain exactly what they do in the main paper I am basing my work on \end{itemize} \end{frame} \begin{frame} \frametitle{Guided Decimation Guessing Decoding} \begin{itemize} \item Update equations \item Key ideas \item Syndrome Based BP \end{itemize} \end{frame} \begin{frame} \frametitle{Memory experiments} \begin{itemize} \item What is a memory experiment? \item Communications Engineering view (what are my inputs and outpus? What do I expect?) \end{itemize} \end{frame} \begin{frame} \frametitle{Systemic overview} \begin{itemize} \item Top level overview of entire system: X and Z syndrome extraction, logical operator measurement, where decoding takes place, etc. (fig. 3 of \citereference{derks_designing_2025}) \end{itemize} \vspace*{15mm} \addreferences {derks_designing_2025} \stopreferences \end{frame} \begin{frame} \frametitle{Research Gap} \begin{itemize} \item Use soft information for sliding window decoding $\rightarrow$ Treat as spacially coupled LDPC code \item Current work considers X and Z errors separately (probably for latency reasons) $\rightarrow$ See how decoding the jointly works out \end{itemize} \end{frame} %%%%%%%%%%%%%%%% \subsection{What we simulate} \label{subsec:What we simulate} \begin{frame} \frametitle{The lack of a Standard Evaluation System} \begin{itemize} \item \red{Look into ECCentric} \item There is not even a standard figure of merit (e.g., FER/BER over SNR in classical case) $\rightarrow$ Multiple different kinds of plots (e.g., footprint) \item Overview of variables \end{itemize} \end{frame} \begin{frame} \frametitle{Proposed Evaluation Pipeline} \begin{itemize} \item To what values I will fix the parameters and why \item What figure of merit I will use and why \end{itemize} \end{frame} \begin{frame}[t] \frametitle{Questions} \begin{minipage}[c]{0.65\textwidth} \centering \LARGE Thank you for your attention!\\ Any questions? \end{minipage}% \begin{minipage}[c]{0.35\textwidth} \centering \begin{figure}[H] \centering \begin{tikzpicture}[every node/.style={scale=10}] \node at (0, 0) {\textcolor{kit-blue}{{\fontfamily{phv}\selectfont ?}}}; \end{tikzpicture} \end{figure} \end{minipage} \end{frame} \appendix \beginbackup % TODO: Move arrow into syndrome extraction lower (branch from other % arrow) and change caption to "modified from [MSLS25]" \begin{frame} \frametitle{System Level Overview} \vspace*{-15mm} \begin{figure}[H] \centering \begin{subfigure}[t]{0.5\textwidth} \centering \includegraphics[scale=1.1]{res/architecture} \vspace*{5mm} \caption{Schematic workflow of surface code quantum computation \citereference{zhang_classical_2023}.} \end{subfigure}% \begin{subfigure}[t]{0.5\textwidth} \centering \tikzset{ block/.style={ draw, rectangle, fill = kit-blue!25, minimum width=75mm, minimum height=15mm, } } \scalebox{0.7}{ \begin{tikzpicture}[node distance=15mm and 20mm] \node[block] (encoding) {Encoding}; \node[block, below=of encoding] (channel) {Quantum Channel}; \node[block, below=of channel] (reverse-op) {Reverse Operation}; \node[block, right=of channel] (syn-extr) {Syndrome Extraction}; \node[block, below=of syn-extr] (syn-dec) {Syndrome Decoder}; \node[above=of encoding] (input) {$\ket{\phi}$}; \node[below=of reverse-op] (output) {$\hat{\mathcal{E}}\mathcal{E}\ket{\psi}$}; \draw [-{Latex}] (encoding) -- (channel) node[midway, right] {$\ket{\psi}$}; \draw [-{Latex}] (channel) -- (reverse-op) node[midway, right] {$\mathcal{E}\ket{\psi}$}; \draw [-{Latex}] (channel) -- (syn-extr) node[midway, above] {$\mathcal{E}\ket{\psi}$}; \draw [-{Latex}] (syn-extr) -- (syn-dec) node[midway, right] {$z$}; \draw [-{Latex}] (syn-dec) -- (reverse-op) node[midway, above] {$\hat{\mathcal{E}}$}; \draw [-{Latex}] (input) -- (encoding); \draw [-{Latex}] (reverse-op) -- (output); \end{tikzpicture} } \vspace*{5mm} \caption{Block diagram of QEC using stabilizer codes \citereference{miao_quaternary_2025}.} \end{subfigure} \end{figure} % \vspace*{-2mm} \addreferences {zhang_classical_2023} {miao_quaternary_2025} \stopreferences \end{frame} % TODO: Is this really necessary? \begin{frame} \frametitle{The Quantum Error Correction Landscape} \begin{itemize} \item Give basic overview of most promising avenues of research (as in ECCentric paper) \end{itemize} \end{frame} \backupend \end{document}