Finish first version of intro

This commit is contained in:
Andreas Tsouchlos 2026-01-29 16:59:05 +01:00
parent cea96986eb
commit 95631f90cf

View File

@ -47,6 +47,7 @@
\usepackage{amssymb} \usepackage{amssymb}
\usepackage{acro} \usepackage{acro}
\usepackage{braket} \usepackage{braket}
\usepackage{qcircuit}
\title{Fault Tolerant Quantum Error Correction} \title{Fault Tolerant Quantum Error Correction}
\subtitle{Master's Thesis Midterm Presentation} \subtitle{Master's Thesis Midterm Presentation}
@ -67,6 +68,7 @@
% %
% %
\newcommand{\red}[1]{\textcolor{red}{#1}}
\newcommand{\res}{src/midterm_presentation/res} \newcommand{\res}{src/midterm_presentation/res}
% %
@ -80,6 +82,11 @@
long=quantum error correction long=quantum error correction
} }
\DeclareAcronym{css}{
short=CSS,
long=Calderbank Shor Steane
}
% %
% %
% Document body % Document body
@ -111,7 +118,7 @@
% [How to factor 2048 bit RSA integers with less than a million % [How to factor 2048 bit RSA integers with less than a million
% noisy qubits] % noisy qubits]
\vspace*{-19mm} \vspace*{-15mm}
\begin{itemize} \begin{itemize}
\item Simulating quantum systems on classical hardware \item Simulating quantum systems on classical hardware
@ -121,7 +128,6 @@
\item Some problems that are ``hard'' to solve on classical \item Some problems that are ``hard'' to solve on classical
computers we can ``easily'' solve on quantum computers computers we can ``easily'' solve on quantum computers
\citereference{preskill_quantum_2018} \citereference{preskill_quantum_2018}
\item We are still in the early days of quantum computing
\end{itemize} \end{itemize}
\vspace*{-5mm} \vspace*{-5mm}
@ -138,6 +144,8 @@
} }
\end{figure} \end{figure}
\vspace*{3mm}
\addreferences \addreferences
{feynman_simulating_1982} {feynman_simulating_1982}
{preskill_quantum_2018} {preskill_quantum_2018}
@ -150,7 +158,7 @@
\begin{frame} \begin{frame}
\frametitle{The Need for Quantum Error Correction} \frametitle{The Need for Quantum Error Correction}
\vspace*{-10mm} \vspace*{-17mm}
% Related interesting stuff % Related interesting stuff
% - Qubits differ from bits in that they can be in superpositions % - Qubits differ from bits in that they can be in superpositions
@ -163,6 +171,9 @@
% 2048 bit RSA integer % 2048 bit RSA integer
% [How to factor 2048 bit RSA integers with less than a million % [How to factor 2048 bit RSA integers with less than a million
% noisy qubits] % noisy qubits]
% - The "physical error rate" is really the value all error rates
% in the system are set to for circuit level noise simulations
% [High-threshold universal quantum computation on the surface code]
% - The backlog problem is the fact that an increasing backlog of % - The backlog problem is the fact that an increasing backlog of
% syndrome data will lead to an exponential slowdown during the % syndrome data will lead to an exponential slowdown during the
% computation % computation
@ -172,31 +183,37 @@
correlations of qubits, not their values \\ correlations of qubits, not their values \\
directly \citereference{preskill_quantum_2018} directly \citereference{preskill_quantum_2018}
\item We want to not disturb the quantum state but need to \item We want to not disturb the quantum state but need to
interact with the system \\ interact with the system $\rightarrow$ Protect the state
$\rightarrow$ Protect the state with \ac{qec} with \ac{qec}
\item We employ more physical qubits to introduce \item We employ more physical qubits to introduce
redundancy and use the resulting \emph{physical} state to redundancy and use the resulting \emph{physical} state to
represent the \emph{logical} state represent the \emph{logical} state
\citereference{roffe_quantum_2019} \citereference{roffe_quantum_2019}
\item IBM recently introduced a scheme encoding 12 logical \vspace*{8mm}
qubits in 288 physical ones \item Typical scales
\begin{itemize}
\item IBM recently introduced a scheme encoding $12$ logical
qubits in $288$ physical ones
\citereference{bravyi_high-threshold_2024} \citereference{bravyi_high-threshold_2024}
\item The physical error rate is typically assumed to be $10^{-3}$ for \item The physical error rate is typically assumed to
simulations (e.g., \citereference{bravyi_high-threshold_2024}) be $10^{-3}$ for
simulations (e.g.,
\citereference{bravyi_high-threshold_2024})
\item Decoding has to happen with ultra-low latency to avoid \item Decoding has to happen with ultra-low latency to avoid
the backlog problem (about $\SI{1}{us}$ per data the backlog problem (about $\SI{1}{us}$ per data
extraction round) \citereference{caune_demonstrating_2024} extraction round) \citereference{caune_demonstrating_2024}
% \citereference{terhal_quantum_2015} % \citereference{terhal_quantum_2015}
\end{itemize} \end{itemize}
\end{itemize}
\vspace*{12mm} \vspace*{7mm}
\addreferences \addreferences
% {terhal_quantum_2015} % {terhal_quantum_2015}
{caune_demonstrating_2024}
{preskill_quantum_2018} {preskill_quantum_2018}
{roffe_quantum_2019} {roffe_quantum_2019}
{bravyi_high-threshold_2024} {bravyi_high-threshold_2024}
{caune_demonstrating_2024}
\stopreferences \stopreferences
\end{frame} \end{frame}
@ -208,6 +225,8 @@
\begin{frame} \begin{frame}
\frametitle{Peculiarities of the Quantum Setting} \frametitle{Peculiarities of the Quantum Setting}
\vspace*{-5mm}
% Related interesting stuff % Related interesting stuff
% - No cloning theorem -> Not replication of state, protection % - No cloning theorem -> Not replication of state, protection
% through further entanglement % through further entanglement
@ -215,53 +234,164 @@
% to correct infinitely many different types of errors. Luckily, % to correct infinitely many different types of errors. Luckily,
% it turns out that in actual fact we only really need to correct % it turns out that in actual fact we only really need to correct
% two [Gottesman's Thesis] % two [Gottesman's Thesis]
% - Mention that kets are just vectors, used here to represent the state
% - There are actually infinitely many different errors that can
% happen, but we can digitize them and only need to consider X and Z
% - Not only do we only care about the coset, we specifically
% don't want to know more than the syndrome can tell us because
% that would mean that "we collapse the quantum mechanical state too
% much"
\begin{itemize} \begin{itemize}
\item Measuring the system collapses the quantum state \item As mentioned earlier, \ac{qec} is actually able to
$\rightarrow$ Loss of benefit of quantum system \\ protect the quantum state with all its correlations
$\rightarrow$ For BP, we work with the syndrome and not \item We have to consider phase flip errors in addition to
the variable nodes \textcolor{red}{This can't be here, bit flip errors \citereference{roffe_quantum_2019}
it's before introducing how QEC works} \vspace*{-10mm}
\item X and Z errors \begin{figure}[H]
\item With QEC we are able to restore the quantum state, not \centering
"just the bits" \begin{subfigure}{0.5\textwidth}
\item We don't care about the specific error, only the coset \centering
its in $\rightarrow$ We only really care about the syndrome
\begin{align*}
\ket{0} &\rightarrow \ket{1} \\
\ket{1} &\rightarrow \ket{0}
\end{align*}
\caption{Bit flip (X) error}
\end{subfigure}%
\begin{subfigure}{0.5\textwidth}
\centering
\begin{align*}
\ket{0} &\rightarrow \phantom{-}\ket{0} \\
\ket{1} &\rightarrow -\ket{1}
\end{align*}
\caption{Phase flip (Z) error}
\end{subfigure}
\end{figure}
\item Measuring the qubits directly destroys superpositions
and entanglement \\
$\rightarrow$ We generally only work with the syndrome,
which we can measure \citereference{nielsen_quantum_2010}
\item We don't care about restoring the specific codeword,
only finding the coset it's in
\end{itemize} \end{itemize}
\vspace*{15mm}
\addreferences
{nielsen_quantum_2010}
{roffe_quantum_2019}
\stopreferences
\end{frame} \end{frame}
\begin{frame} \begin{frame}
\frametitle{Fundamentals of Quantum Error Correction} \frametitle{Stabilizer and Calderbank Shor Steane Codes}
\vspace*{-5mm}
% Related interesting stuff
% - Using stabilizers to describe quantum codes is a bit like
% using parity check equations to describe classical codes
% -> stabilizer codes are the quantum analog of binary linear codes
% - For CSS codes, "the parity checks for the X errors and the
% parity checks for the Z errors can be represented independently
% of one another"
\begin{itemize} \begin{itemize}
\item Stabilizer codes: the quantum equivalent of binary linear codes \item Stabilizer codes \citereference{nielsen_quantum_2010}
\item CSS codes: separate corection of X and Z errors \begin{itemize}
$\rightarrow$ simpler circuitry \item The code space can implicitly be defined using
\item Construction of CSS codes from binary linear codes \emph{stabilizer generators}
\textcolor{red}{Is this really necessary?} \item We can represent them using parity
check matrices
\item Quantum analog of linear codes
\end{itemize} \end{itemize}
\vspace*{10mm}
\item \Ac{css} codes \citereference{nielsen_quantum_2010}
\begin{itemize}
\item Subset of stabilizer codes
\item Can correct X and Z errors independently
\item Described using two separate parity check
matrices $\bm{H}_\text{X}$ and $\bm{H}_\text{Z}$
\item Can be constructed from two binary linear codes
$\mathcal{C}_1 \left[ n, k_1 \right]$ and
$\mathcal{C}_2 \left[ n, k_2 \right]$ with
$\mathcal{C}_2 \subset \mathcal{C}_1$
\end{itemize}
\vspace*{10mm}
\item \red{Do I need to go more in depth for either
stabilizer codes or CSS codes?}
\end{itemize}
\vspace*{10mm}
\addreferences
{nielsen_quantum_2010}
\stopreferences
\end{frame} \end{frame}
% TODO: Is this really necessary? % TODO: Do I need to show what the syndrome extraction circuitry for
% Z errors looks like?
\begin{frame} \begin{frame}
\frametitle{The Quantum Error Correction Landscape} \frametitle{Syndrome Extraction Circuits}
\vspace*{-16mm}
\begin{itemize} \begin{itemize}
\item Give basic overview of most promising avenues of \item We entangle the state with \emph{ancilla qubits} to
research (as in ECCentric paper) perform syndrome measurements \citereference{nielsen_quantum_2010}
\item Example: The 3-qubit repetition code%
\footnote {
Note that, for simplicity, this chosen example is a
code that is not only able to correct X errors (bit flips)
} %
\red{Do I need to show what the syndrome extraction
circuitry for Z errors looks like?}
\end{itemize} \end{itemize}
\end{frame}
\begin{frame} \vspace*{-10mm}
\frametitle{An Example: The Steane Code}
\begin{align*}
\bm{H} =
\begin{pmatrix}
1 & 1 & 0 \\
0 & 1 & 1
\end{pmatrix}
\end{align*}
\vspace*{5mm}
\begin{figure}[H]
\centering
\mbox{
% tex-fmt: off
\Qcircuit @C=1em @R=.7em {
& & \ctrl{3} & \qw & \qw & \qw & \qw & \qw \\
\ket{\psi}_\text{L} & & \qw & \ctrl{2} & \ctrl{3} & \qw & \qw & \qw \\
& & \qw & \qw & \qw & \ctrl{2} & \qw & \qw \\
\ket{0}_{\text{A}_1} & & \targ & \targ & \qw & \qw & \meter & \\
\ket{0}_{\text{A}_2} & & \qw & \qw & \targ & \targ & \meter &
}
% tex-fmt: on
}
\vspace*{5mm}
\caption{Syndrome extraction circuit for the 3-qubit repetition code}
\end{figure}
% \vspace*{5mm}
\vspace*{-2mm}
\addreferences
{nielsen_quantum_2010}
\stopreferences
\begin{itemize}
\item \textcolor{red}{Give example slides grey background or something?}
\item The Steane code is the quantum equivalent of the
[7,4]-Hamming code
\item Construction from Hamming code
\item Syndrome Extraction Circuitry
\end{itemize}
\end{frame} \end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@ -287,10 +417,29 @@
\item The Threshold theorem \item The Threshold theorem
\setcounter{footnote}{0} \setcounter{footnote}{0}
\item Definition of fault tolerance \footnotemark \item Definition of fault tolerance \footnotemark
\item \textcolor{red}{Different approaches to fault tolerance?} \item \red{Different approaches to fault tolerance?}
\end{itemize} \end{itemize}
\end{frame} \end{frame}
% TODO: Where to we introduces the different kinds of noise models?
\begin{frame}
\frametitle{Noise models}
\begin{itemize}
\item The depolarizing channel
\item Phenomenological noise
\item Circuit-level noise (we generally have all error
probabilities equal the same value \\
for simulations \citereference{fowler_high-threshold_2009})
\end{itemize}
\vspace*{15mm}
\addreferences
{fowler_high-threshold_2009}
\stopreferences
\end{frame}
%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%
\subsection{Detector Error Models} \subsection{Detector Error Models}
\label{subsec:Detector Error Models} \label{subsec:Detector Error Models}
@ -305,10 +454,11 @@
\end{frame} \end{frame}
\begin{frame} \begin{frame}
\frametitle{An Example: Steane Code Detector Error Model} \frametitle{Example: 3-Qubit Repetition Code Detector\\ Error
Model for Circuit Level Noise}
\begin{itemize} \begin{itemize}
\item New Syndrome Extraction Circuitry \textcolor{red}{Is a \item New Syndrome Extraction Circuitry \red{Is a
repetition of the old circuitry needed?} repetition of the old circuitry needed?}
\item New parity check matrix \item New parity check matrix
\item Highlighting of the SC-LDPC-code-like structure \item Highlighting of the SC-LDPC-code-like structure
@ -319,16 +469,16 @@
\frametitle{Challenges} \frametitle{Challenges}
\begin{itemize} \begin{itemize}
\item Multiple different errors are summarized $\rightarrow$ \item \red{Multiple different errors are summarized
short cycles \& degeneracy $\rightarrow$ short cycles \& degeneracy}
\footnote{ \footnote{
\texttt{ \texttt{
https://www.math.cit.tum.de/fileadmin/w00ccg/math/\_my\_direct\_uploads/Dan\_Browne.pdf \red{https://www.math.cit.tum.de/fileadmin/w00ccg/math/\_my\_direct\_uploads/Dan\_Browne.pdf}
} }
} }
\\ \\
$\rightarrow$ We generally don't use "normal BP" (BP + \red{$\rightarrow$ We generally don't use "normal BP" (BP
OSD, BPGD, etc.) + OSD, BPGD, etc.)}
\end{itemize} \end{itemize}
\end{frame} \end{frame}
@ -344,6 +494,8 @@
\frametitle{Sliding Window Decoding} \frametitle{Sliding Window Decoding}
\begin{itemize} \begin{itemize}
% TODO: Do I have to explain BP?
\item \red{Do I have to explain BP}
\item Give overview of existing research \item Give overview of existing research
\item Explain exactly what they do in the main paper I am \item Explain exactly what they do in the main paper I am
basing my work on basing my work on
@ -376,8 +528,14 @@
\begin{itemize} \begin{itemize}
\item Top level overview of entire system: X and Z syndrome \item Top level overview of entire system: X and Z syndrome
extraction, logical operator measurement, where decoding extraction, logical operator measurement, where decoding
takes place, etc. takes place, etc. (fig. 3 of \citereference{derks_designing_2025})
\end{itemize} \end{itemize}
\vspace*{15mm}
\addreferences
{derks_designing_2025}
\stopreferences
\end{frame} \end{frame}
\begin{frame} \begin{frame}
@ -400,7 +558,7 @@
\frametitle{The lack of a Standard Evaluation System} \frametitle{The lack of a Standard Evaluation System}
\begin{itemize} \begin{itemize}
\item \textcolor{red}{Look into ECCentric} \item \red{Look into ECCentric}
\item There is not even a standard figure of merit (e.g., \item There is not even a standard figure of merit (e.g.,
FER/BER over SNR in classical case) $\rightarrow$ FER/BER over SNR in classical case) $\rightarrow$
Multiple different kinds of plots (e.g., footprint) Multiple different kinds of plots (e.g., footprint)
@ -417,9 +575,33 @@
\end{itemize} \end{itemize}
\end{frame} \end{frame}
\begin{frame}[t]
\frametitle{Questions}
\begin{minipage}[c]{0.65\textwidth}
\centering
\LARGE Thank you for your attention!\\ Any questions?
\end{minipage}%
\begin{minipage}[c]{0.35\textwidth}
\centering
\begin{figure}[H]
\centering
\begin{tikzpicture}[every node/.style={scale=10}]
\node at (0, 0)
{\textcolor{kit-blue}{{\fontfamily{phv}\selectfont ?}}};
\end{tikzpicture}
\end{figure}
\end{minipage}
\end{frame}
\appendix \appendix
\beginbackup \beginbackup
% TODO: Move arrow into syndrome extraction lower (branch from other
% arrow) and change caption to "modified from [MSLS25]"
\begin{frame} \begin{frame}
\frametitle{System Level Overview} \frametitle{System Level Overview}
@ -495,6 +677,16 @@
\stopreferences \stopreferences
\end{frame} \end{frame}
% TODO: Is this really necessary?
\begin{frame}
\frametitle{The Quantum Error Correction Landscape}
\begin{itemize}
\item Give basic overview of most promising avenues of
research (as in ECCentric paper)
\end{itemize}
\end{frame}
\backupend \backupend
\end{document} \end{document}