homotopy-continuation-chann.../python/hccd/homotopy_generator.py

118 lines
3.8 KiB
Python

import numpy as np
import sympy as sp
from typing import List, Callable
class HomotopyGenerator:
"""Generates homotopy functions from a binary parity check matrix."""
def __init__(self, parity_check_matrix: np.ndarray):
"""
Initialize with a parity check matrix.
Args:
parity_check_matrix: Binary matrix where rows represent parity checks
and columns represent variables.
"""
self.H_matrix = parity_check_matrix
self.num_checks, self.num_vars = parity_check_matrix.shape
# Create symbolic variables
self.x_vars = [sp.symbols(f'x{i+1}') for i in range(self.num_vars)]
self.t = sp.symbols('t')
# Generate G, F, and H
self.G = self._create_G()
self.F = self._create_F()
self.H = self._create_H()
# Convert to callable functions
self._H_lambda = self._create_H_lambda()
self._DH_lambda = self._create_DH_lambda()
def _create_G(self) -> List[sp.Expr]:
"""Create G polynomial system (the starting system)."""
# For each variable xi, add the polynomial [xi]
G = []
for var in self.x_vars:
G.append(var)
return G
def _create_F(self) -> List[sp.Expr]:
"""Create F polynomial system (the target system)."""
F = []
# Add 1 - xi^2 for each variable
for var in self.x_vars:
F.append(1 - var**2)
# Add parity check polynomials: 1 - x1*x2*...*xk for each parity check
for row in self.H_matrix:
# Create product of variables that participate in this check
term = 1
for i, bit in enumerate(row):
if bit == 1:
term *= self.x_vars[i]
if term != 1: # Only add if there are variables in this check
F.append(1 - term)
return F
def _create_H(self) -> List[sp.Expr]:
"""Create the homotopy H = (1-t)*G + t*F."""
H = []
# Make sure G and F have the same length
# Repeat variables from G if needed to match F's length
G_extended = self.G.copy()
while len(G_extended) < len(self.F):
# Cycle through variables to repeat
for i in range(min(self.num_vars, len(self.F) - len(G_extended))):
G_extended.append(self.x_vars[i % self.num_vars])
# Create the homotopy
for g, f in zip(G_extended, self.F):
H.append((1 - self.t) * g + self.t * f)
return H
def _create_H_lambda(self) -> Callable:
"""Create a lambda function to evaluate H."""
all_vars = self.x_vars + [self.t]
return sp.lambdify(all_vars, self.H, 'numpy')
def _create_DH_lambda(self) -> Callable:
"""Create a lambda function to evaluate the Jacobian of H."""
all_vars = self.x_vars + [self.t]
jacobian = sp.Matrix([[sp.diff(expr, var)
for var in all_vars] for expr in self.H])
return sp.lambdify(all_vars, jacobian, 'numpy')
def evaluate_H(self, y: np.ndarray) -> np.ndarray:
"""
Evaluate H at point y.
Args:
y: Array of form [x1, x2, ..., xn, t] where xi are the variables
and t is the homotopy parameter.
Returns:
Array containing H evaluated at y.
"""
return np.array(self._H_lambda(*y))
def evaluate_DH(self, y: np.ndarray) -> np.ndarray:
"""
Evaluate the Jacobian of H at point y.
Args:
y: Array of form [x1, x2, ..., xn, t] where xi are the variables
and t is the homotopy parameter.
Returns:
Matrix containing the Jacobian of H evaluated at y.
"""
return np.array(self._DH_lambda(*y), dtype=float)