import numpy as np import sympy as sp from typing import List, Callable class HomotopyGenerator: """Generates homotopy functions from a binary parity check matrix.""" def __init__(self, parity_check_matrix: np.ndarray): """ Initialize with a parity check matrix. Args: parity_check_matrix: Binary matrix where rows represent parity checks and columns represent variables. """ self.H_matrix = parity_check_matrix self.num_checks, self.num_vars = parity_check_matrix.shape self.x_vars = [sp.symbols(f'x{i+1}') for i in range(self.num_vars)] self.t = sp.symbols('t') self.G = self._create_G() self.F = self._create_F() self.H = self._create_H() self.DH = self._create_DH(self.H) self._H_lambda = self._create_H_lambda() self._DH_lambda = self._create_DH_lambda() def _create_G(self) -> List[sp.Expr]: G = [] for var in self.x_vars: G.append(var) return G def _create_F(self) -> sp.MutableMatrix: F = [] for var in self.x_vars: F.append(1 - var**2) for row in self.H_matrix: term = 1 for i, bit in enumerate(row): if bit == 1: term *= self.x_vars[i] F.append(1 - term) groebner_basis = sp.groebner(F) return sp.MutableMatrix(groebner_basis) def _create_H(self) -> List[sp.Expr]: H = [] for g, f in zip(self.G, self.F): H.append((1 - self.t) * g + self.t * f) return H def _create_DH(self, H: List[sp.Expr]) -> sp.MutableMatrix: all_vars = self.x_vars + [self.t] DH = sp.Matrix([[sp.diff(expr, var) for var in all_vars] for expr in self.H]) return DH def _create_H_lambda(self) -> Callable: all_vars = self.x_vars + [self.t] return sp.lambdify(all_vars, self.H, 'numpy') def _create_DH_lambda(self) -> Callable: all_vars = self.x_vars + [self.t] return sp.lambdify(all_vars, self.DH, 'numpy') def evaluate_H(self, y: np.ndarray) -> np.ndarray: """ Evaluate H at point y. Args: y: Array of form [x1, x2, ..., xn, t] where xi are the variables and t is the homotopy parameter. Returns: Array containing H evaluated at y. """ return np.array(self._H_lambda(*y)) def evaluate_DH(self, y: np.ndarray) -> np.ndarray: """ Evaluate the Jacobian of H at point y. Args: y: Array of form [x1, x2, ..., xn, t] where xi are the variables and t is the homotopy parameter. Returns: Matrix containing the Jacobian of H evaluated at y. """ return np.array(self._DH_lambda(*y), dtype=float)