Compare commits

..

4 Commits

Author SHA1 Message Date
5762c602af Remove hccd/__main__.py 2025-03-27 23:25:19 +01:00
94b3619487 Doc update 2025-03-27 23:25:01 +01:00
5c060088e0 Fix step() function 2025-03-27 23:24:38 +01:00
9ab80a8385 Implement simulate_error_rate.py 2025-03-27 23:23:51 +01:00
5 changed files with 207 additions and 8 deletions

View File

@ -1,6 +1,8 @@
# Homotopy Continuation
### Introduction
## Introduction
### Overview
The aim of a homotopy method consists in solving a system of N nonlinear
equations in N variables \[1, p.1\]:
@ -85,6 +87,26 @@ between successive points produced by the iterations can be used as a criterion
for convergence. Of course, if the iterations fail to converge, one must go
back to adjust the step size for the Eulers predictor." [2, p.130]
## Application to Channel Decoding
We can describe the decoding problem using the code constraint polynomial [3]
$$
h(\bm{x}) = \underbrace{\sum_{i=1}^{n}\left(1-x_i^2\right)^2}_{\text{Bipolar constraint}} + \underbrace{\sum_{j=1}^{m}\left(1 - \left(\prod_{i\in A(j)}x_i\right)\right)^2}_{\text{Parity constraint}},
$$
where $A(j) = \left\{i \in [1:n]: H_{j,i} = 1\right\}$ represents the set of
variable nodes involved in parity check j. This polynomial consists of a set of
terms representing the bipolar constraint and a set of terms representing the
parity constraint. In a similar vein, we can define the following set of
polynomial equations to describe codewords:
$$
F = \left[\begin{array}{c}1 - x_1^2 \\ \vdots\\ 1 - x_n^2 \\ 1 - \prod_{i \in A(1)}x_i \\ \vdots\\ 1 - \prod_{i \in A(m)}x_i\end{array}\right] \overset{!}{=} \bm{0}.
$$
This is a problem we can solve using homotopy continuation.
______________________________________________________________________
## References
@ -97,3 +119,7 @@ Philadelphia, PA 19104), 2003. doi: 10.1137/1.9780898719154.
\[2\]: T. Chen and T.-Y. Li, “Homotopy continuation method for solving systems
of nonlinear and polynomial equations,” Communications in Information and
Systems, vol. 15, no. 2, pp. 119307, 2015, doi: 10.4310/CIS.2015.v15.n2.a1.
\[3\]: Wadayama, Tadashi, and Satoshi Takabe. "Proximal decoding for LDPC
codes." IEICE Transactions on Fundamentals of Electronics, Communications and
Computer Sciences 106.3 (2023): 359-367.

View File

@ -0,0 +1,150 @@
import typing
import numpy as np
import galois
import argparse
from dataclasses import dataclass
from tqdm import tqdm
# autopep8: off
import sys
import os
sys.path.append(f"{os.path.dirname(os.path.abspath(__file__))}/../")
from hccd import utility, homotopy_generator, path_tracker
# autopep8: on
@dataclass
class SimulationArgs:
euler_step_size: float
euler_max_tries: int
newton_max_iter: int
newton_convergence_threshold: float
sigma: int
homotopy_iter: int
max_frames: int
target_frame_errors: int
def decode(tracker, y, H, args: SimulationArgs) -> np.ndarray:
x_hat = np.mod(np.round(y), 2).astype('int32')
s = np.concatenate([y, np.array([0])])
for i in range(args.homotopy_iter):
x_hat = np.mod(np.round(s[:-1]), 2).astype('int32')
if not np.any(np.mod(H @ x_hat, 2)):
return x_hat
# if s[-1] > 1.5:
# return x_hat
try:
s = tracker.step(s)
except:
return x_hat
return x_hat
def simulate_error_rates_for_SNR(H, Eb_N0, args: SimulationArgs) -> typing.Tuple[np.ndarray, np.ndarray, np.ndarray]:
GF = galois.GF(2)
H_GF = GF(H)
G = H_GF.null_space()
k, n = G.shape
homotopy = homotopy_generator.HomotopyGenerator(H)
# print(f"G: {homotopy.G}")
# print(f"F: {homotopy.F}")
# print(f"H: {homotopy.H}")
# print(f"DH: {homotopy.DH}")
tracker = path_tracker.PathTracker(homotopy, args.euler_step_size, args.euler_max_tries,
args.newton_max_iter, args.newton_convergence_threshold, args.sigma)
num_frames = 0
bit_errors = 0
frame_errors = 0
decoding_failures = 0
for _ in tqdm(range(args.max_frames)):
Eb_N0_lin = 10**(Eb_N0 / 10)
N0 = 1 / (2 * k / n * Eb_N0_lin)
y = np.zeros(n) + np.sqrt(N0) * np.random.normal(size=n)
x_hat = decode(tracker, y, H, args)
bit_errors += np.sum(x_hat != np.zeros(n))
frame_errors += np.any(x_hat != np.zeros(n))
if np.any(np.mod(H @ x_hat, 2)):
decoding_failures += 1
num_frames += 1
if frame_errors > args.target_frame_errors:
break
BER = bit_errors / (num_frames * n)
FER = frame_errors / num_frames
DFR = decoding_failures / num_frames
return FER, BER, DFR
def main():
# Parse command line arguments
parser = argparse.ArgumentParser()
parser.add_argument("-c", "--code", type=str, required=True,
help="Path to the alist file containing the parity check matrix of the code")
# TODO: Extend this script to multiple SRNs
parser.add_argument("--snr", type=float, required=True,
help="Eb/N0 to use for this simulation")
parser.add_argument("--max-frames", type=int, default=int(1e6),
help="Maximum number of frames to simulate")
parser.add_argument("--target-frame-errors", type=int, default=200,
help="Number of frame errors after which to stop the simulation")
parser.add_argument("--euler-step-size", type=float,
default=0.05, help="Step size for Euler predictor")
parser.add_argument("--euler-max-tries", type=int, default=5,
help="Maximum number of tries for Euler predictor")
parser.add_argument("--newton-max-iter", type=int, default=5,
help="Maximum number of iterations for Newton corrector")
parser.add_argument("--newton-convergence-threshold", type=float,
default=0.01, help="Convergence threshold for Newton corrector")
parser.add_argument("-s", "--sigma", type=int, default=1,
help="Direction in which the path is traced")
parser.add_argument("-n", "--homotopy-iter", type=int, default=20,
help="Number of iterations of the homotopy continuation method to perform for each decoding")
args = parser.parse_args()
# TODO: Name this section properly
# Do stuff
H = utility.read_alist_file(args.code)
simulation_args = SimulationArgs(
euler_step_size=args.euler_step_size,
euler_max_tries=args.euler_max_tries,
newton_max_iter=args.newton_max_iter,
newton_convergence_threshold=args.newton_convergence_threshold,
sigma=args.sigma,
homotopy_iter=args.homotopy_iter,
max_frames=args.max_frames,
target_frame_errors=args.target_frame_errors)
FER, BER, DFR = simulate_error_rates_for_SNR(H, args.snr, simulation_args)
print(f"FER: {FER}")
print(f"DFR: {DFR}")
print(f"BER: {BER}")
if __name__ == "__main__":
main()

View File

@ -1,6 +0,0 @@
def main():
pass
if __name__ == "__main__":
main()

View File

@ -29,7 +29,7 @@ class PathTracker:
def step(self, y):
"""Perform one predictor-corrector step."""
return self.transparent_step(y)[0]
return self.transparent_step(y)[3]
def transparent_step(self, y) -> typing.Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray,]:
"""Perform one predictor-corrector step, returning intermediate results."""

29
python/hccd/utility.py Normal file
View File

@ -0,0 +1,29 @@
import numpy as np
def _parse_alist_header(header):
size = header.split()
return int(size[0]), int(size[1])
def read_alist_file(filename):
"""
This function reads in an alist file and creates the
corresponding parity check matrix H. The format of alist
files is described at:
http://www.inference.phy.cam.ac.uk/mackay/codes/alist.html
"""
with open(filename, 'r') as myfile:
data = myfile.readlines()
numCols, numRows = _parse_alist_header(data[0])
H = np.zeros((numRows, numCols))
# The locations of 1s starts in the 5th line of the file
for lineNumber in np.arange(4, 4 + numCols):
indices = data[lineNumber].split()
for index in indices:
H[int(index) - 1, lineNumber - 4] = 1
return H.astype(np.int32)