Add sweep_parameter_space.py
This commit is contained in:
parent
39c5468fa1
commit
ffabda0e4d
171
python/examples/sweep_parameter_space.py
Normal file
171
python/examples/sweep_parameter_space.py
Normal file
@ -0,0 +1,171 @@
|
||||
from pathlib import Path
|
||||
from ray import tune
|
||||
import ray
|
||||
import typing
|
||||
import numpy as np
|
||||
import galois
|
||||
import argparse
|
||||
from dataclasses import dataclass
|
||||
import pandas as pd
|
||||
|
||||
# autopep8: off
|
||||
import sys
|
||||
import os
|
||||
sys.path.append(f"{os.path.dirname(os.path.abspath(__file__))}/../")
|
||||
|
||||
from hccd import utility, homotopy_generator, path_tracker
|
||||
# autopep8: on
|
||||
|
||||
|
||||
@dataclass
|
||||
class SimulationArgs:
|
||||
euler_step_size: float
|
||||
euler_max_tries: int
|
||||
newton_max_iter: int
|
||||
newton_convergence_threshold: float
|
||||
sigma: int
|
||||
homotopy_iter: int
|
||||
|
||||
max_frames: int
|
||||
target_frame_errors: int
|
||||
|
||||
|
||||
def decode(tracker, y, H, args: SimulationArgs) -> np.ndarray:
|
||||
x_hat = np.where(y >= 0, 0, 1)
|
||||
|
||||
s = np.concatenate([y, np.array([0])])
|
||||
for i in range(args.homotopy_iter):
|
||||
x_hat = np.where(s[:-1] >= 0, 0, 1)
|
||||
if not np.any(np.mod(H @ x_hat, 2)):
|
||||
return x_hat
|
||||
|
||||
try:
|
||||
s = tracker.step(s)
|
||||
except:
|
||||
return x_hat
|
||||
|
||||
return x_hat
|
||||
|
||||
|
||||
def simulate_error_rates_for_SNR(H, Eb_N0, args: SimulationArgs) -> typing.Tuple[float, float, float, int]:
|
||||
GF = galois.GF(2)
|
||||
H_GF = GF(H)
|
||||
G = H_GF.null_space()
|
||||
k, n = G.shape
|
||||
|
||||
num_frames = 0
|
||||
|
||||
bit_errors = 0
|
||||
frame_errors = 0
|
||||
decoding_failures = 0
|
||||
|
||||
homotopy = homotopy_generator.HomotopyGenerator(H)
|
||||
tracker = path_tracker.PathTracker(homotopy, args.euler_step_size, args.euler_max_tries,
|
||||
args.newton_max_iter, args.newton_convergence_threshold, args.sigma)
|
||||
|
||||
for _ in range(args.max_frames):
|
||||
Eb_N0_lin = 10**(Eb_N0 / 10)
|
||||
N0 = 1 / (2 * k / n * Eb_N0_lin)
|
||||
|
||||
u = np.random.randint(2, size=k)
|
||||
# u = np.zeros(shape=k).astype(np.int32)
|
||||
c = np.array(GF(u) @ G)
|
||||
x = 1 - 2*c
|
||||
|
||||
y = x + np.sqrt(N0) * np.random.normal(size=n)
|
||||
|
||||
homotopy.update_received(y)
|
||||
|
||||
c_hat = decode(tracker, y, H, args)
|
||||
|
||||
if np.any(np.mod(H @ c_hat, 2)):
|
||||
tracker.set_sigma(-1 * args.sigma)
|
||||
c_hat = decode(tracker, y, H, args)
|
||||
tracker.set_sigma(args.sigma)
|
||||
|
||||
if np.any(np.mod(H @ c_hat, 2)):
|
||||
decoding_failures += 1
|
||||
|
||||
bit_errors += np.sum(c_hat != c)
|
||||
frame_errors += np.any(c_hat != c)
|
||||
num_frames += 1
|
||||
|
||||
if frame_errors >= args.target_frame_errors:
|
||||
break
|
||||
|
||||
BER = bit_errors / (num_frames * n)
|
||||
FER = frame_errors / num_frames
|
||||
DFR = decoding_failures / num_frames
|
||||
|
||||
return FER, BER, DFR, frame_errors
|
||||
|
||||
|
||||
def simulation(config):
|
||||
simulation_args = SimulationArgs(
|
||||
euler_step_size=config["euler_step_size"],
|
||||
euler_max_tries=20,
|
||||
newton_max_iter=20,
|
||||
newton_convergence_threshold=config["newton_convergence_threshold"],
|
||||
sigma=config["sigma"],
|
||||
homotopy_iter=config["homotopy_iter"],
|
||||
max_frames=100000,
|
||||
target_frame_errors=200)
|
||||
|
||||
FER, BER, DFR, frame_errors = simulate_error_rates_for_SNR(
|
||||
config["H"], config["Eb_N0"], simulation_args)
|
||||
|
||||
return {"FER": FER, "BER": BER, "DFR": DFR, "frame_errors": frame_errors}
|
||||
|
||||
|
||||
def main():
|
||||
# Parse command line arguments
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
parser.add_argument("-c", "--code", type=str, required=True,
|
||||
help="Path to the alist file containing the parity check matrix of the code")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
H = utility.read_alist_file(args.code)
|
||||
|
||||
# Run parameter sweep
|
||||
|
||||
ray.init()
|
||||
|
||||
search_space = {
|
||||
"Eb_N0": tune.grid_search([6]),
|
||||
"newton_convergence_threshold": tune.grid_search(np.array([0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1])),
|
||||
"euler_step_size": tune.grid_search(np.array([0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1])),
|
||||
"homotopy_iter": tune.grid_search(np.array([500])),
|
||||
"sigma": tune.grid_search(np.array([1, -1])),
|
||||
"H": tune.grid_search([H])
|
||||
}
|
||||
|
||||
tuner = tune.Tuner(
|
||||
simulation,
|
||||
param_space=search_space,
|
||||
tune_config=tune.TuneConfig(
|
||||
max_concurrent_trials=12,
|
||||
),
|
||||
run_config=tune.RunConfig(
|
||||
name="param_sweep",
|
||||
storage_path=Path.cwd() / "sim_results"
|
||||
)
|
||||
)
|
||||
|
||||
results = tuner.fit()
|
||||
|
||||
df = results.get_dataframe()
|
||||
|
||||
keep_columns = ["FER", "BER", "DFR", "frame_errors"]
|
||||
config_columns = [col for col in df.columns if col.startswith("config/")]
|
||||
columns_to_keep = keep_columns + config_columns
|
||||
df = df[columns_to_keep].drop(columns=["config/H"])
|
||||
|
||||
df.to_csv("sweep_results.csv", index=False)
|
||||
print(df.head())
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
Loading…
Reference in New Issue
Block a user