Add sweep_parameter_space.py

This commit is contained in:
Andreas Tsouchlos 2025-05-13 14:59:36 +02:00
parent 39c5468fa1
commit ffabda0e4d

View File

@ -0,0 +1,171 @@
from pathlib import Path
from ray import tune
import ray
import typing
import numpy as np
import galois
import argparse
from dataclasses import dataclass
import pandas as pd
# autopep8: off
import sys
import os
sys.path.append(f"{os.path.dirname(os.path.abspath(__file__))}/../")
from hccd import utility, homotopy_generator, path_tracker
# autopep8: on
@dataclass
class SimulationArgs:
euler_step_size: float
euler_max_tries: int
newton_max_iter: int
newton_convergence_threshold: float
sigma: int
homotopy_iter: int
max_frames: int
target_frame_errors: int
def decode(tracker, y, H, args: SimulationArgs) -> np.ndarray:
x_hat = np.where(y >= 0, 0, 1)
s = np.concatenate([y, np.array([0])])
for i in range(args.homotopy_iter):
x_hat = np.where(s[:-1] >= 0, 0, 1)
if not np.any(np.mod(H @ x_hat, 2)):
return x_hat
try:
s = tracker.step(s)
except:
return x_hat
return x_hat
def simulate_error_rates_for_SNR(H, Eb_N0, args: SimulationArgs) -> typing.Tuple[float, float, float, int]:
GF = galois.GF(2)
H_GF = GF(H)
G = H_GF.null_space()
k, n = G.shape
num_frames = 0
bit_errors = 0
frame_errors = 0
decoding_failures = 0
homotopy = homotopy_generator.HomotopyGenerator(H)
tracker = path_tracker.PathTracker(homotopy, args.euler_step_size, args.euler_max_tries,
args.newton_max_iter, args.newton_convergence_threshold, args.sigma)
for _ in range(args.max_frames):
Eb_N0_lin = 10**(Eb_N0 / 10)
N0 = 1 / (2 * k / n * Eb_N0_lin)
u = np.random.randint(2, size=k)
# u = np.zeros(shape=k).astype(np.int32)
c = np.array(GF(u) @ G)
x = 1 - 2*c
y = x + np.sqrt(N0) * np.random.normal(size=n)
homotopy.update_received(y)
c_hat = decode(tracker, y, H, args)
if np.any(np.mod(H @ c_hat, 2)):
tracker.set_sigma(-1 * args.sigma)
c_hat = decode(tracker, y, H, args)
tracker.set_sigma(args.sigma)
if np.any(np.mod(H @ c_hat, 2)):
decoding_failures += 1
bit_errors += np.sum(c_hat != c)
frame_errors += np.any(c_hat != c)
num_frames += 1
if frame_errors >= args.target_frame_errors:
break
BER = bit_errors / (num_frames * n)
FER = frame_errors / num_frames
DFR = decoding_failures / num_frames
return FER, BER, DFR, frame_errors
def simulation(config):
simulation_args = SimulationArgs(
euler_step_size=config["euler_step_size"],
euler_max_tries=20,
newton_max_iter=20,
newton_convergence_threshold=config["newton_convergence_threshold"],
sigma=config["sigma"],
homotopy_iter=config["homotopy_iter"],
max_frames=100000,
target_frame_errors=200)
FER, BER, DFR, frame_errors = simulate_error_rates_for_SNR(
config["H"], config["Eb_N0"], simulation_args)
return {"FER": FER, "BER": BER, "DFR": DFR, "frame_errors": frame_errors}
def main():
# Parse command line arguments
parser = argparse.ArgumentParser()
parser.add_argument("-c", "--code", type=str, required=True,
help="Path to the alist file containing the parity check matrix of the code")
args = parser.parse_args()
H = utility.read_alist_file(args.code)
# Run parameter sweep
ray.init()
search_space = {
"Eb_N0": tune.grid_search([6]),
"newton_convergence_threshold": tune.grid_search(np.array([0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1])),
"euler_step_size": tune.grid_search(np.array([0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1])),
"homotopy_iter": tune.grid_search(np.array([500])),
"sigma": tune.grid_search(np.array([1, -1])),
"H": tune.grid_search([H])
}
tuner = tune.Tuner(
simulation,
param_space=search_space,
tune_config=tune.TuneConfig(
max_concurrent_trials=12,
),
run_config=tune.RunConfig(
name="param_sweep",
storage_path=Path.cwd() / "sim_results"
)
)
results = tuner.fit()
df = results.get_dataframe()
keep_columns = ["FER", "BER", "DFR", "frame_errors"]
config_columns = [col for col in df.columns if col.startswith("config/")]
columns_to_keep = keep_columns + config_columns
df = df[columns_to_keep].drop(columns=["config/H"])
df.to_csv("sweep_results.csv", index=False)
print(df.head())
if __name__ == "__main__":
main()