Make Homotopy generator use Newton Homotopy

This commit is contained in:
Andreas Tsouchlos 2025-05-08 06:07:28 +02:00
parent fffb15595b
commit 5529cd92cc
5 changed files with 92 additions and 70 deletions

View File

@ -18,12 +18,14 @@ def track_path(args):
[0, 1, 1, 0],
[0, 0, 1, 1]])
homotopy = homotopy_generator.HomotopyGenerator(H)
received = np.array([0, 0, 0, 0])
print(f"G: {homotopy.G}")
print(f"F: {homotopy.F}")
print(f"H: {homotopy.H}")
print(f"DH: {homotopy.DH}")
homotopy = homotopy_generator.HomotopyGenerator(H, received)
# print(f"G: {homotopy.G}")
# print(f"F: {homotopy.F}")
# print(f"H: {homotopy.H}")
# print(f"DH: {homotopy.DH}")
tracker = path_tracker.PathTracker(homotopy, args.euler_step_size, args.euler_max_tries,
args.newton_max_iter, args.newton_convergence_threshold, args.sigma)

View File

@ -54,35 +54,35 @@ def simulate_error_rates_for_SNR(H, Eb_N0, args: SimulationArgs) -> typing.Tuple
G = H_GF.null_space()
k, n = G.shape
homotopy = homotopy_generator.HomotopyGenerator(H)
# print(f"G: {homotopy.G}")
# print(f"F: {homotopy.F}")
# print(f"H: {homotopy.H}")
# print(f"DH: {homotopy.DH}")
tracker = path_tracker.PathTracker(homotopy, args.euler_step_size, args.euler_max_tries,
args.newton_max_iter, args.newton_convergence_threshold, args.sigma)
num_frames = 0
bit_errors = 0
frame_errors = 0
decoding_failures = 0
homotopy = homotopy_generator.HomotopyGenerator(H)
tracker = path_tracker.PathTracker(homotopy, args.euler_step_size, args.euler_max_tries,
args.newton_max_iter, args.newton_convergence_threshold, args.sigma)
for _ in tqdm(range(args.max_frames)):
Eb_N0_lin = 10**(Eb_N0 / 10)
N0 = 1 / (2 * k / n * Eb_N0_lin)
y = np.zeros(n) + np.sqrt(N0) * np.random.normal(size=n)
homotopy.update_received(y)
x_hat = decode(tracker, y, H, args)
if np.any(np.mod(H @ x_hat, 2)):
tracker.set_sigma(-1 * args.sigma)
x_hat = decode(tracker, y, H, args)
tracker.set_sigma(args.sigma)
if np.any(np.mod(H @ x_hat, 2)):
decoding_failures += 1
bit_errors += np.sum(x_hat != np.zeros(n))
frame_errors += np.any(x_hat != np.zeros(n))
if np.any(np.mod(H @ x_hat, 2)):
decoding_failures += 1
num_frames += 1
if frame_errors >= args.target_frame_errors:
@ -160,8 +160,10 @@ def main():
FERs, BERs, DFRs, frame_errors_list = simulate_error_rates(
H, SNRs, simulation_args)
df = pd.DataFrame({"SNR": SNRs, "FER": FERs, "BER": BERs, "DFR": DFRs, "frame_errors": frame_errors_list})
df = pd.DataFrame({"SNR": SNRs, "FER": FERs, "BER": BERs,
"DFR": DFRs, "frame_errors": frame_errors_list})
print(df)
if __name__ == "__main__":
main()

View File

@ -30,7 +30,7 @@ class ToyHomotopy:
[t]]
"""
@staticmethod
def evaluate_H(y: np.ndarray) -> np.ndarray:
def H(y: np.ndarray) -> np.ndarray:
"""Evaluate H at y."""
x1 = y[0]
x2 = y[1]
@ -43,7 +43,7 @@ class ToyHomotopy:
return result
@staticmethod
def evaluate_DH(y: np.ndarray) -> np.ndarray:
def DH(y: np.ndarray) -> np.ndarray:
"""Evaluate Jacobian of H at y."""
x1 = y[0]
x2 = y[1]

View File

@ -20,20 +20,23 @@ class HomotopyGenerator:
self.x_vars = [sp.symbols(f'x{i+1}') for i in range(self.num_vars)]
self.t = sp.symbols('t')
self.G = self._create_G()
self.F = self._create_F()
self.H = self._create_H()
self.DH = self._create_DH(self.H)
self._F = self._create_F()
self._F_lambda = self._create_F_lambda(self._F)
# self._G = self._create_G(received)
# self._G_lambda = self._create_G_lambda(self._G)
# self._H = self._create_H()
# self._H_lambda = self._create_H_lambda(self._H)
# self._DH = self._create_DH()
# self._DH_lambda = self._create_DH_lambda(self._DH)
self._H_lambda = self._create_H_lambda()
self._DH_lambda = self._create_DH_lambda()
def _create_G(self) -> List[sp.Expr]:
G = []
for var in self.x_vars:
G.append(var)
return G
def update_received(self, received: np.ndarray):
"""Update the received vector and recompute G."""
self._G = self._create_G(received)
self._G_lambda = self._create_G_lambda(self._G)
self._H = self._create_H()
self._H_lambda = self._create_H_lambda(self._H)
self._DH = self._create_DH()
self._DH_lambda = self._create_DH_lambda(self._DH)
def _create_F(self) -> sp.MutableMatrix:
F = []
@ -52,51 +55,63 @@ class HomotopyGenerator:
groebner_basis = sp.groebner(F)
return sp.MutableMatrix(groebner_basis)
def _create_H(self) -> List[sp.Expr]:
def _create_G(self, received) -> sp.MutableMatrix:
G = []
F_y = self._F_lambda(*received)
for f, f_y_i in zip(self._F, F_y):
G.append(f - (1 - self.t) * f_y_i)
return sp.MutableMatrix(G)
def _create_H(self) -> sp.MutableMatrix:
H = []
for g, f in zip(self.G, self.F):
for f, g in zip(self._F, self._G):
H.append((1 - self.t) * g + self.t * f)
return H
return sp.MutableMatrix(H)
def _create_DH(self, H: List[sp.Expr]) -> sp.MutableMatrix:
def _create_DH(self) -> sp.MutableMatrix:
all_vars = self.x_vars + [self.t]
DH = sp.Matrix([[sp.diff(expr, var)
for var in all_vars] for expr in self.H])
for var in all_vars] for expr in self._H])
return DH
def _create_H_lambda(self) -> Callable:
def _create_F_lambda(self, expr) -> Callable:
all_vars = self.x_vars
return sp.lambdify(all_vars, expr, 'numpy')
def _create_G_lambda(self, expr) -> Callable:
all_vars = self.x_vars
return sp.lambdify(all_vars, expr, 'numpy')
def _create_H_lambda(self, expr) -> Callable:
all_vars = self.x_vars + [self.t]
return sp.lambdify(all_vars, self.H, 'numpy')
return sp.lambdify(all_vars, expr, 'numpy')
def _create_DH_lambda(self) -> Callable:
def _create_DH_lambda(self, expr) -> Callable:
all_vars = self.x_vars + [self.t]
return sp.lambdify(all_vars, self.DH, 'numpy')
return sp.lambdify(all_vars, expr, 'numpy')
def evaluate_H(self, y: np.ndarray) -> np.ndarray:
"""
Evaluate H at point y.
Args:
y: Array of form [x1, x2, ..., xn, t] where xi are the variables
and t is the homotopy parameter.
Returns:
Array containing H evaluated at y.
"""
def H(self, y):
return np.array(self._H_lambda(*y))
def evaluate_DH(self, y: np.ndarray) -> np.ndarray:
"""
Evaluate the Jacobian of H at point y.
def DH(self, y):
return np.array(self._DH_lambda(*y))
Args:
y: Array of form [x1, x2, ..., xn, t] where xi are the variables
and t is the homotopy parameter.
Returns:
Matrix containing the Jacobian of H evaluated at y.
"""
return np.array(self._DH_lambda(*y), dtype=float)
def main():
import utility
H = utility.read_alist_file(
"/home/andreas/workspace/work/hiwi/ba-sw/codes/BCH_7_4.alist")
a = HomotopyGenerator(H)
y = np.array([0.1, 0.2, 0.9, 0.1, -0.8, -0.5, -1.0, 0])
print(a.DH(y))
if __name__ == "__main__":
main()

View File

@ -18,9 +18,9 @@ class PathTracker:
Information and Systems, vol. 15, no. 2, pp. 119-307, 2015
"""
def __init__(self, Homotopy, euler_step_size=0.05, euler_max_tries=10, newton_max_iter=5,
def __init__(self, homotopy, euler_step_size=0.05, euler_max_tries=10, newton_max_iter=5,
newton_convergence_threshold=0.001, sigma=1):
self.Homotopy = Homotopy
self._homotopy = homotopy
self._euler_step_size = euler_step_size
self._euler_max_tries = euler_max_tries
self._newton_max_iter = newton_max_iter
@ -47,7 +47,7 @@ class PathTracker:
def _perform_euler_predictor_step(self, y, step_size) -> typing.Tuple[np.ndarray, np.ndarray]:
# Obtain y_prime
DH = self.Homotopy.evaluate_DH(y)
DH = self._homotopy.DH(y)
ns = scipy.linalg.null_space(DH)
y_prime = ns[:, 0] * self._sigma
@ -70,10 +70,10 @@ class PathTracker:
for _ in range(self._newton_max_iter):
# Perform correction
DH = self.Homotopy.evaluate_DH(y)
DH = self._homotopy.DH(y)
DH_pinv = np.linalg.pinv(DH)
y = y - DH_pinv @ self.Homotopy.evaluate_H(y)
y = y - np.transpose(DH_pinv @ self._homotopy.H(y))[0]
# Check stopping criterion
@ -83,3 +83,6 @@ class PathTracker:
prev_y = y
raise RuntimeError("Newton corrector did not converge")
def set_sigma(self, sigma):
self._sigma = sigma