Add 2025-05-08 presentation
This commit is contained in:
parent
0c129b8866
commit
41ad5d0912
392
src/2025-05-08/presentation.tex
Normal file
392
src/2025-05-08/presentation.tex
Normal file
@ -0,0 +1,392 @@
|
|||||||
|
\documentclass[10pt, aspectratio=169, usenames, dvipsnames]{beamer}
|
||||||
|
|
||||||
|
\usepackage{tikz}
|
||||||
|
\usepackage{tikz-3dplot}
|
||||||
|
\usetikzlibrary{spy, external, intersections}
|
||||||
|
%\tikzexternalize[prefix=build/]
|
||||||
|
|
||||||
|
\usepackage{pgfplots}
|
||||||
|
\pgfplotsset{compat=newest}
|
||||||
|
\usepgfplotslibrary{fillbetween}
|
||||||
|
|
||||||
|
\usepackage{listings}
|
||||||
|
\usepackage{subcaption}
|
||||||
|
\usepackage{bbm}
|
||||||
|
\usepackage{multirow}
|
||||||
|
|
||||||
|
\usepackage{xcolor}
|
||||||
|
%\usepackage[outputdir=build/]{minted}
|
||||||
|
\usepackage{minted}
|
||||||
|
\usemintedstyle{gruvbox-light}
|
||||||
|
|
||||||
|
%\definecolor{gruvbox-bg}{HTML}{282828}
|
||||||
|
\definecolor{gruvbox-bg}{HTML}{f2e5bc}
|
||||||
|
|
||||||
|
%
|
||||||
|
%
|
||||||
|
% Custom commands
|
||||||
|
%
|
||||||
|
%
|
||||||
|
|
||||||
|
\input{lib/latex-common/common.tex}
|
||||||
|
\pgfplotsset{colorscheme/rocket}
|
||||||
|
|
||||||
|
\newcommand{\res}{src/2025-05-08/res}
|
||||||
|
|
||||||
|
%
|
||||||
|
%
|
||||||
|
% CEL Template
|
||||||
|
%
|
||||||
|
%
|
||||||
|
|
||||||
|
\newcommand{\templates}{lib/cel-template}
|
||||||
|
|
||||||
|
\input{\templates/packages.tex}
|
||||||
|
\input{\templates/modifications.tex}
|
||||||
|
\input{\templates/makros_own.tex}
|
||||||
|
|
||||||
|
% % Change the way the overview is displayed
|
||||||
|
% \AtBeginSection[]
|
||||||
|
% {
|
||||||
|
% \begin{frame}[t]
|
||||||
|
% \frametitle{Overview}
|
||||||
|
% \tableofcontents[sectionstyle=show/shaded,
|
||||||
|
% subsectionstyle=show/show/shaded,
|
||||||
|
% subsubsectionstyle=hide]
|
||||||
|
% \end{frame}
|
||||||
|
% }
|
||||||
|
% \AtBeginSubsubsection[]{}
|
||||||
|
% \AtBeginSubsection[]{}
|
||||||
|
|
||||||
|
%
|
||||||
|
%
|
||||||
|
% Set up document
|
||||||
|
%
|
||||||
|
%
|
||||||
|
|
||||||
|
\title{HiWi Notes: Minimization of the Code Constraint Polynomial using
|
||||||
|
Homotopy Continuation Methods}
|
||||||
|
\subtitle{\small 08.05.2025}
|
||||||
|
\author{\vspace{1.5mm} Andreas Tsouchlos}
|
||||||
|
\date{ }
|
||||||
|
|
||||||
|
\institute{Karlsruhe Institute of Technology (KIT),
|
||||||
|
\\ Communications Engineering Lab (CEL) }
|
||||||
|
|
||||||
|
\tikzstyle{every node}=[font=\small]
|
||||||
|
\captionsetup[sub]{font=small}
|
||||||
|
|
||||||
|
%
|
||||||
|
%
|
||||||
|
% Document body
|
||||||
|
%
|
||||||
|
%
|
||||||
|
|
||||||
|
\begin{document}
|
||||||
|
|
||||||
|
\begin{frame}[plain]
|
||||||
|
\maketitle
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
\newcommand{\largecitereference}[1]
|
||||||
|
{\textcolor{kit-green100}{ \large \textbf{{[#1]}} }}
|
||||||
|
|
||||||
|
\begin{frame}
|
||||||
|
\frametitle{The All-Zeros Assumption}
|
||||||
|
|
||||||
|
\vspace*{-5mm}
|
||||||
|
|
||||||
|
\begin{itemize}
|
||||||
|
\item Previous results were generated using the all-zeros
|
||||||
|
assumption
|
||||||
|
\item To cancel out any numerical effects,
|
||||||
|
subsequent results have been generated using randomly
|
||||||
|
generated codewords
|
||||||
|
\item Using randomly generated codewords paints a very different picture
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
\begin{figure}[H]
|
||||||
|
\centering
|
||||||
|
|
||||||
|
\begin{subfigure}[c]{0.48\textwidth}
|
||||||
|
\centering
|
||||||
|
|
||||||
|
\vskip 0pt
|
||||||
|
\begin{tikzpicture}
|
||||||
|
\begin{axis}[
|
||||||
|
width=\textwidth,
|
||||||
|
height=0.75\textwidth,
|
||||||
|
ylabel={FER (-\,-\,-), BER (---)},
|
||||||
|
ymode=log,
|
||||||
|
legend,
|
||||||
|
xlabel = {$Eb/N0$ (dB)},
|
||||||
|
legend pos= south west,
|
||||||
|
xmax=6
|
||||||
|
]
|
||||||
|
|
||||||
|
\addplot+[black, densely dashed, mark=none, line width=1pt,
|
||||||
|
forget plot]
|
||||||
|
table[col sep=comma, x=SNR, y=FER, discard if
|
||||||
|
not={gamma}{0.05}]
|
||||||
|
{\res/bch_31_26_proximal.csv};
|
||||||
|
\addplot+[black, mark=none, line width=1pt]
|
||||||
|
table[col sep=comma, x=SNR, y=BER, discard if
|
||||||
|
not={gamma}{0.05}]
|
||||||
|
{\res/bch_31_26_proximal.csv};
|
||||||
|
\addlegendentry{Proximal decoding}
|
||||||
|
|
||||||
|
\addplot+[scol3, densely dashed, mark=none, line
|
||||||
|
width=1pt, forget plot]
|
||||||
|
table[col sep=comma, x=SNR, y=FER]
|
||||||
|
{\res/bch_31_26_hc_all_zeros.csv};
|
||||||
|
\addplot+[scol3, mark=none, line width=1pt]
|
||||||
|
table[col sep=comma, x=SNR, y=BER]
|
||||||
|
{\res/bch_31_26_hc_all_zeros.csv};
|
||||||
|
\addlegendentry{Hom. cont. - all zeros}
|
||||||
|
|
||||||
|
\addplot+[scol1, densely dashed, mark=none, line
|
||||||
|
width=1pt, forget plot]
|
||||||
|
table[col sep=comma, x=SNR, y=FER]
|
||||||
|
{\res/bch_31_26_hc_random.csv};
|
||||||
|
\addplot+[scol1, mark=none, line width=1pt]
|
||||||
|
table[col sep=comma, x=SNR, y=BER]
|
||||||
|
{\res/bch_31_26_hc_random.csv};
|
||||||
|
\addlegendentry{Hom. cont. - rand. cw.}
|
||||||
|
|
||||||
|
\end{axis}
|
||||||
|
\end{tikzpicture}
|
||||||
|
|
||||||
|
\caption{BCH(31,26) Code}
|
||||||
|
\end{subfigure}%
|
||||||
|
\begin{subfigure}[c]{0.48\textwidth}
|
||||||
|
\centering
|
||||||
|
|
||||||
|
\vspace*{-17mm}
|
||||||
|
|
||||||
|
\begin{tabular}{rl|ccccc}
|
||||||
|
& Parameter & Value \\ \hline
|
||||||
|
$n_\text{iter}$ & for homotopy continuation & 20 \\
|
||||||
|
$n_\text{iter}$ & for Newton corrector & 5 \\
|
||||||
|
$\delta_\text{max}$ & for Newton corrector & 0.01 \\
|
||||||
|
$\Delta s$ & for Euler predictor & 0.05 \\
|
||||||
|
$n_\text{retries}$ & for Euler predictor & 5
|
||||||
|
\end{tabular}
|
||||||
|
|
||||||
|
\bigskip
|
||||||
|
\smallskip
|
||||||
|
\end{subfigure}
|
||||||
|
\end{figure}
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
\begin{frame}
|
||||||
|
\frametitle{Fixed Point Homotopy}
|
||||||
|
|
||||||
|
\vspace*{-6mm}
|
||||||
|
|
||||||
|
\begin{itemize}
|
||||||
|
\item Previous results were generated using the Newton homotopy
|
||||||
|
\begin{gather*}
|
||||||
|
G(\bm{x}) = F(x) - F(\bm{y}) \hspace{5mm} \Rightarrow
|
||||||
|
\hspace{5mm} H(\bm{x}) = F(\bm{x}) - (1 - t) F(\bm{y})
|
||||||
|
\end{gather*}
|
||||||
|
\item We could instead try the fixed point homotopy
|
||||||
|
\begin{gather*}
|
||||||
|
G(\bm{x}) = (\bm{x} - \bm{y}) \hspace{5mm}
|
||||||
|
\Rightarrow \hspace{5mm} H(\bm{x}) = (1-t)(\bm{x} -
|
||||||
|
\bm{y}) + t F(\bm{x})
|
||||||
|
\end{gather*}
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
\vspace*{-2mm}
|
||||||
|
|
||||||
|
\begin{figure}[H]
|
||||||
|
\centering
|
||||||
|
|
||||||
|
\begin{subfigure}[c]{0.48\textwidth}
|
||||||
|
\centering
|
||||||
|
|
||||||
|
\vskip 0pt
|
||||||
|
\begin{tikzpicture}
|
||||||
|
\begin{axis}[
|
||||||
|
width=\textwidth,
|
||||||
|
height=0.72\textwidth,
|
||||||
|
ylabel={FER (-\,-\,-), BER (---)},
|
||||||
|
ymode=log,
|
||||||
|
legend,
|
||||||
|
xlabel = {$Eb/N0$ (dB)},
|
||||||
|
legend pos= south west,
|
||||||
|
xmax=6,
|
||||||
|
ymin = 0.1
|
||||||
|
]
|
||||||
|
|
||||||
|
\addplot+[scol1, densely dashed, mark=none, line
|
||||||
|
width=1pt, forget plot]
|
||||||
|
table[col sep=comma, x=SNR, y=FER]
|
||||||
|
{\res/bch_31_26_hc_fixed_point_random.csv};
|
||||||
|
\addplot+[scol1, mark=none, line width=1pt]
|
||||||
|
table[col sep=comma, x=SNR, y=BER]
|
||||||
|
{\res/bch_31_26_hc_fixed_point_random.csv};
|
||||||
|
\addlegendentry{Hom. cont. - fixed point, rand. cw.}
|
||||||
|
|
||||||
|
\end{axis}
|
||||||
|
\end{tikzpicture}
|
||||||
|
|
||||||
|
\vspace*{-2mm}
|
||||||
|
\caption{BCH(31,26) Code}
|
||||||
|
\end{subfigure}%
|
||||||
|
\begin{subfigure}[c]{0.48\textwidth}
|
||||||
|
\centering
|
||||||
|
|
||||||
|
\vspace*{-17mm}
|
||||||
|
|
||||||
|
\begin{tabular}{rl|ccccc}
|
||||||
|
& Parameter & Value \\ \hline
|
||||||
|
$n_\text{iter}$ & for homotopy continuation & 20 \\
|
||||||
|
$n_\text{iter}$ & for Newton corrector & 5 \\
|
||||||
|
$\delta_\text{max}$ & for Newton corrector & 0.01 \\
|
||||||
|
$\Delta s$ & for Euler predictor & 0.05 \\
|
||||||
|
$n_\text{retries}$ & for Euler predictor & 5
|
||||||
|
\end{tabular}
|
||||||
|
|
||||||
|
\bigskip
|
||||||
|
\smallskip
|
||||||
|
\end{subfigure}
|
||||||
|
\end{figure}
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
\begin{frame}
|
||||||
|
\frametitle{Parameter Exploration}
|
||||||
|
|
||||||
|
\vspace*{-7mm}
|
||||||
|
|
||||||
|
\begin{figure}
|
||||||
|
\centering
|
||||||
|
\begin{subfigure}[c]{0.48\textwidth}
|
||||||
|
\centering
|
||||||
|
\begin{itemize}
|
||||||
|
\item Fixed parameters:
|
||||||
|
\begin{tabular}{rl|c}
|
||||||
|
& Parameter & Value \\ \hline
|
||||||
|
$E_\text{b} / N_0$ &
|
||||||
|
& $\SI{6}{dB}$ \\
|
||||||
|
$n_\text{iter}$ & for homotopy continuation & 200 \\
|
||||||
|
$n_\text{iter}$ & for Newton corrector & 20 \\
|
||||||
|
$n_\text{retries}$ & for Euler predictor & 20
|
||||||
|
\end{tabular}
|
||||||
|
\item Random codewords, Newton homotopy, BCH(31, 26) code
|
||||||
|
\item Low decoding failure rate (DFR) $\rightarrow$
|
||||||
|
We do often reach codewords, just not the correct ones
|
||||||
|
\end{itemize}
|
||||||
|
\end{subfigure} \hfill %
|
||||||
|
\begin{subfigure}[c]{0.48\textwidth}
|
||||||
|
\centering
|
||||||
|
\vskip 0pt
|
||||||
|
\scalebox{0.7}{
|
||||||
|
% tex-fmt: off
|
||||||
|
\begin{tabular}{c|c|ccccccc}
|
||||||
|
DFR && \multicolumn{7}{c}{Euler step size}\\\hline
|
||||||
|
&& 0.001 & 0.005 & 0.01 & 0.05 & 0.1 & 0.5 & 1.0 \\ \hline
|
||||||
|
\parbox[t]{2mm}{\multirow{7}{*}{\rotatebox[origin=c]{90}{Newtown threshold}}}
|
||||||
|
& 0.001 & 0.070 & 0.055 & 0.085 & 0.070 & 0.075 & 0.050 & 0.060 \\
|
||||||
|
& 0.005 & 0.055 & 0.075 & 0.060 & 0.070 & 0.100 & 0.070 & 0.050 \\
|
||||||
|
& 0.01 & 0.065 & 0.060 & 0.075 & 0.085 & 0.095 & 0.040 & 0.045 \\
|
||||||
|
& 0.05 & 0.090 & 0.080 & 0.085 & 0.085 & 0.045 & 0.065 & 0.055 \\
|
||||||
|
& 0.1 & 0.100 & 0.085 & 0.045 & 0.080 & 0.065 & 0.055 & 0.075 \\
|
||||||
|
& 0.5 & 0.070 & 0.075 & 0.125 & 0.055 & 0.070 & 0.055 & 0.090 \\
|
||||||
|
& 1.0 & 0.055 & 0.095 & 0.060 & 0.050 & 0.055 & 0.075 & 0.055 \\
|
||||||
|
\end{tabular}
|
||||||
|
% tex-fmt: on
|
||||||
|
}
|
||||||
|
\end{subfigure}\\[2mm]
|
||||||
|
\begin{subfigure}[t]{0.48\textwidth}
|
||||||
|
\centering
|
||||||
|
\scalebox{0.7}{
|
||||||
|
% tex-fmt: off
|
||||||
|
\begin{tabular}{c|c|ccccccc}
|
||||||
|
FER && \multicolumn{7}{c}{Euler step size}\\\hline
|
||||||
|
&& 0.001 & 0.005 & 0.01 & 0.05 & 0.1 & 0.5 & 1.0 \\ \hline
|
||||||
|
\parbox[t]{2mm}{\multirow{7}{*}{\rotatebox[origin=c]{90}{Newtown threshold\footnotemark}}}
|
||||||
|
& 0.001 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 \\
|
||||||
|
& 0.005 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 \\
|
||||||
|
& 0.01 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 \\
|
||||||
|
& 0.05 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 \\
|
||||||
|
& 0.1 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 \\
|
||||||
|
& 0.5 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 \\
|
||||||
|
& 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 \\
|
||||||
|
\end{tabular}
|
||||||
|
% tex-fmt: on
|
||||||
|
}
|
||||||
|
\end{subfigure} \hfill %
|
||||||
|
\begin{subfigure}[t]{0.48\textwidth}
|
||||||
|
\centering
|
||||||
|
\scalebox{0.7}{
|
||||||
|
% tex-fmt: off
|
||||||
|
\begin{tabular}{c|c|ccccccc}
|
||||||
|
BER && \multicolumn{7}{c}{Euler step size}\\\hline
|
||||||
|
&& 0.001 & 0.005 & 0.01 & 0.05 & 0.1 & 0.5 & 1.0 \\ \hline
|
||||||
|
\parbox[t]{2mm}{\multirow{7}{*}{\rotatebox[origin=c]{90}{Newtown threshold}}}
|
||||||
|
& 0.001 & 0.497 & 0.496 & 0.509 & 0.495 & 0.508 & 0.495 & 0.503 \\
|
||||||
|
& 0.005 & 0.509 & 0.503 & 0.491 & 0.502 & 0.506 & 0.502 & 0.502 \\
|
||||||
|
& 0.01 & 0.498 & 0.492 & 0.520 & 0.509 & 0.500 & 0.502 & 0.504 \\
|
||||||
|
& 0.05 & 0.503 & 0.499 & 0.507 & 0.494 & 0.492 & 0.500 & 0.506 \\
|
||||||
|
& 0.1 & 0.499 & 0.499 & 0.500 & 0.508 & 0.502 & 0.488 & 0.507 \\
|
||||||
|
& 0.5 & 0.510 & 0.503 & 0.510 & 0.495 & 0.507 & 0.515 & 0.501 \\
|
||||||
|
& 1.0 & 0.502 & 0.506 & 0.506 & 0.502 & 0.500 & 0.505 & 0.500 \\
|
||||||
|
\end{tabular}
|
||||||
|
% tex-fmt: on
|
||||||
|
}
|
||||||
|
\end{subfigure}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
\footnotetext{``Newton threshold'' refers to the threshold used
|
||||||
|
for the convergence criterion of the newton corrector}
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
\begin{frame}etwas
|
||||||
|
\frametitle{Tentative Conclusion}
|
||||||
|
|
||||||
|
\vspace*{-5mm}
|
||||||
|
|
||||||
|
\begin{itemize}
|
||||||
|
\item Original motivation
|
||||||
|
\begin{itemize}
|
||||||
|
\item Novel decoding technique
|
||||||
|
\item Possible decoding guarantees due to homotopy
|
||||||
|
continuation behavior
|
||||||
|
\end{itemize}
|
||||||
|
\item Simulation results
|
||||||
|
\begin{itemize}
|
||||||
|
\item Implementing a working decoder has proven
|
||||||
|
difficult, irrespective of the parameters / code chosen
|
||||||
|
\item The homotopy continuation implementation itself
|
||||||
|
seems to be working, judging by the DFR
|
||||||
|
\item There are two alternatives that both describe
|
||||||
|
the observed results:
|
||||||
|
\begin{itemize}
|
||||||
|
\item We always converge to the same
|
||||||
|
codeword - error rates are due to
|
||||||
|
Tx codewords being random
|
||||||
|
\item We randomly converge to codewords that
|
||||||
|
have nothing to do with what was sent
|
||||||
|
\end{itemize}
|
||||||
|
\end{itemize}
|
||||||
|
\item Problems
|
||||||
|
\begin{itemize}
|
||||||
|
\item It is not obvious how we can apply the
|
||||||
|
theory from homotopy continuation to the
|
||||||
|
decoder
|
||||||
|
\item Decoding algorithm seems too comput. expensive (matrix
|
||||||
|
inversion necessary for each iteration)
|
||||||
|
\end{itemize}
|
||||||
|
\item Conclusion
|
||||||
|
\begin{itemize}
|
||||||
|
\item There is no hard evidence yet that a decoder
|
||||||
|
based on homotopy continuation can't work
|
||||||
|
\item However, pursuing this line of research doesn't seem
|
||||||
|
particularly promising, due to missing motivation
|
||||||
|
and missing evidence it can work at all
|
||||||
|
\end{itemize}
|
||||||
|
\end{itemize}
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
\end{document}
|
||||||
1101
src/2025-05-08/res/H.csv
Normal file
1101
src/2025-05-08/res/H.csv
Normal file
File diff suppressed because it is too large
Load Diff
7
src/2025-05-08/res/bch_31_11.csv
Normal file
7
src/2025-05-08/res/bch_31_11.csv
Normal file
@ -0,0 +1,7 @@
|
|||||||
|
SNR,FER,BER,DFR,frame_errors
|
||||||
|
2.0, 0.550964, 0.250955, 0.550964, 200
|
||||||
|
4.0, 0.487805, 0.215342, 0.487805, 200
|
||||||
|
6.0, 0.255102, 0.103152, 0.255102, 200
|
||||||
|
8.0, 0.057339, 0.018756, 0.057339, 200
|
||||||
|
10.0, 0.003046, 0.000718, 0.003046, 200
|
||||||
|
12.0, 0.000022, 0.000003, 0.000022, 22
|
||||||
|
7
src/2025-05-08/res/bch_31_26_hc_all_zeros.csv
Normal file
7
src/2025-05-08/res/bch_31_26_hc_all_zeros.csv
Normal file
@ -0,0 +1,7 @@
|
|||||||
|
SNR,FER,BER,DFR,frame_errors
|
||||||
|
1.0, 0.869565, 0.073072, 0.826087, 200
|
||||||
|
2.0, 0.653595, 0.045435, 0.630719, 200
|
||||||
|
3.0, 0.546448, 0.030672, 0.535519, 200
|
||||||
|
4.0, 0.377358, 0.017712, 0.371698, 200
|
||||||
|
5.0, 0.174825, 0.007219, 0.173077, 200
|
||||||
|
6.0, 0.068989, 0.002648, 0.065885, 200
|
||||||
|
7
src/2025-05-08/res/bch_31_26_hc_fixed_point_random.csv
Normal file
7
src/2025-05-08/res/bch_31_26_hc_fixed_point_random.csv
Normal file
@ -0,0 +1,7 @@
|
|||||||
|
SNR,FER,BER,DFR,frame_errors
|
||||||
|
1.0, 1.0, 0.532419, 0.635, 200
|
||||||
|
2.0, 1.0, 0.523710, 0.470, 200
|
||||||
|
3.0, 1.0, 0.520806, 0.425, 200
|
||||||
|
4.0, 1.0, 0.518871, 0.220, 200
|
||||||
|
5.0, 1.0, 0.512419, 0.125, 200
|
||||||
|
6.0, 1.0, 0.504839, 0.085, 200
|
||||||
|
7
src/2025-05-08/res/bch_31_26_hc_newton.csv
Normal file
7
src/2025-05-08/res/bch_31_26_hc_newton.csv
Normal file
@ -0,0 +1,7 @@
|
|||||||
|
SNR,FER,BER,DFR,frame_errors
|
||||||
|
2.0,1.000000,0.409194,0.985000,200
|
||||||
|
4.0,1.000000,0.302097,0.990000,200
|
||||||
|
6.0,0.995025,0.185684,0.930348,200
|
||||||
|
8.0,0.970874,0.106326,0.941748,200
|
||||||
|
10.0,0.749064,0.043132,0.734082,200
|
||||||
|
12.0,0.251889,0.009547,0.251889,200
|
||||||
|
7
src/2025-05-08/res/bch_31_26_hc_newton_random.csv
Normal file
7
src/2025-05-08/res/bch_31_26_hc_newton_random.csv
Normal file
@ -0,0 +1,7 @@
|
|||||||
|
SNR,FER,BER,DFR,frame_errors
|
||||||
|
2.0,1.000000,0.396613,0.965000,200
|
||||||
|
4.0,1.000000,0.298548,0.960000,200
|
||||||
|
6.0,1.000000,0.193871,0.960000,200
|
||||||
|
8.0,0.966184,0.106904,0.937198,200
|
||||||
|
10.0,0.716846,0.040351,0.709677,200
|
||||||
|
12.0,0.238379,0.009112,0.235995,200
|
||||||
|
7
src/2025-05-08/res/bch_31_26_hc_no_newton_random.csv
Normal file
7
src/2025-05-08/res/bch_31_26_hc_no_newton_random.csv
Normal file
@ -0,0 +1,7 @@
|
|||||||
|
SNR,FER,BER,DFR,frame_errors
|
||||||
|
2.0,1.000000,0.471774,0.250000,200
|
||||||
|
4.0,1.000000,0.461613,0.260000,200
|
||||||
|
6.0,1.000000,0.450806,0.125000,200
|
||||||
|
8.0,0.970874,0.454588,0.087379,200
|
||||||
|
10.0,0.738007,0.340198,0.110701,200
|
||||||
|
12.0,0.264201,0.119657,0.054161,200
|
||||||
|
7
src/2025-05-08/res/bch_31_26_hc_no_newton_zeros.csv
Normal file
7
src/2025-05-08/res/bch_31_26_hc_no_newton_zeros.csv
Normal file
@ -0,0 +1,7 @@
|
|||||||
|
SNR,FER,BER,DFR,frame_errors
|
||||||
|
2.0,0.506329,0.209637,0.470886,200
|
||||||
|
4.0,0.111794,0.039002,0.081610,200
|
||||||
|
6.0,0.036826,0.007674,0.002210,200
|
||||||
|
8.0,0.022379,0.002815,0.000000,200
|
||||||
|
10.0,0.008497,0.000683,0.000000,200
|
||||||
|
12.0,0.001114,0.000073,0.000000,200
|
||||||
|
7
src/2025-05-08/res/bch_31_26_hc_random.csv
Normal file
7
src/2025-05-08/res/bch_31_26_hc_random.csv
Normal file
@ -0,0 +1,7 @@
|
|||||||
|
SNR,FER,BER,DFR,frame_errors
|
||||||
|
1.0, 1.0, 0.524194, 0.700, 200
|
||||||
|
2.0, 1.0, 0.520161, 0.495, 200
|
||||||
|
3.0, 1.0, 0.509516, 0.455, 200
|
||||||
|
4.0, 1.0, 0.515161, 0.295, 200
|
||||||
|
5.0, 1.0, 0.506290, 0.145, 200
|
||||||
|
6.0, 1.0, 0.504516, 0.065, 200
|
||||||
|
7
src/2025-05-08/res/bch_31_26_hc_rx_fixed_point.csv
Normal file
7
src/2025-05-08/res/bch_31_26_hc_rx_fixed_point.csv
Normal file
@ -0,0 +1,7 @@
|
|||||||
|
SNR,FER,BER,DFR,frame_errors
|
||||||
|
2.0,1.000000,0.410484,0.860000,200
|
||||||
|
4.0,1.000000,0.308710,0.895000,200
|
||||||
|
6.0,1.000000,0.207581,0.900000,200
|
||||||
|
8.0,0.909091,0.100000,0.868182,200
|
||||||
|
10.0,0.602410,0.040420,0.575301,200
|
||||||
|
12.0,0.156128,0.006421,0.156128,200
|
||||||
|
9
src/2025-05-08/res/bch_31_26_ml.csv
Normal file
9
src/2025-05-08/res/bch_31_26_ml.csv
Normal file
@ -0,0 +1,9 @@
|
|||||||
|
SNR,FER,num_errors,num_iterations
|
||||||
|
0.00,7.353e-01,100,136
|
||||||
|
1.00,4.566e-01,100,219
|
||||||
|
2.00,2.695e-01,100,371
|
||||||
|
3.00,9.990e-02,100,1001
|
||||||
|
4.00,3.271e-02,100,3057
|
||||||
|
5.00,5.692e-03,100,17568
|
||||||
|
6.00,5.506e-04,100,181625
|
||||||
|
7.00,4.400e-05,44,1000000
|
||||||
|
121
src/2025-05-08/res/bch_31_26_proximal.csv
Normal file
121
src/2025-05-08/res/bch_31_26_proximal.csv
Normal file
@ -0,0 +1,121 @@
|
|||||||
|
SNR,gamma,BER,FER,DFR,num_iterations
|
||||||
|
1.0,0.05,0.06718717896034518,0.643312101910828,0.31140350877192985,157.0
|
||||||
|
1.5,0.05,0.0661494487545937,0.6392405063291139,0.3218884120171674,158.0
|
||||||
|
2.0,0.05,0.05079308501158439,0.5580110497237569,0.29571984435797666,181.0
|
||||||
|
2.5,0.05,0.031607700312174816,0.40725806451612906,0.2392638036809816,248.0
|
||||||
|
3.0,0.05,0.02535950252623397,0.3042168674698795,0.18427518427518427,332.0
|
||||||
|
3.5,0.05,0.01818181818181818,0.22954545454545455,0.15221579961464354,440.0
|
||||||
|
4.0,0.05,0.00959242319990286,0.12672521957340024,0.09225512528473805,797.0
|
||||||
|
4.5,0.05,0.006309506892141537,0.08898678414096917,0.07195421095666395,1135.0
|
||||||
|
5.0,0.05,0.00286888005926325,0.042171189979123176,0.03466344216041919,2395.0
|
||||||
|
5.5,0.05,0.0013774794630334601,0.019604037267080744,0.01510227489963678,5152.0
|
||||||
|
1.0,0.06,0.07658688865764829,0.6516129032258065,0.2986425339366516,155.0
|
||||||
|
1.5,0.06,0.06632837984777093,0.5674157303370787,0.29365079365079366,178.0
|
||||||
|
2.0,0.06,0.055200966016905294,0.5401069518716578,0.26666666666666666,187.0
|
||||||
|
2.5,0.06,0.04103324681745149,0.38697318007662834,0.2018348623853211,261.0
|
||||||
|
3.0,0.06,0.025357499168606586,0.2603092783505155,0.15835140997830802,388.0
|
||||||
|
3.5,0.06,0.01972079154242342,0.21218487394957983,0.1407942238267148,476.0
|
||||||
|
4.0,0.06,0.00978494623655914,0.11222222222222222,0.07692307692307693,900.0
|
||||||
|
4.5,0.06,0.00609199720895282,0.08402662229617304,0.06893880712625872,1202.0
|
||||||
|
5.0,0.06,0.0027946638640407974,0.03739355794150315,0.031205164992826398,2701.0
|
||||||
|
5.5,0.06,0.0014139377270801887,0.018679489550582577,0.01332116788321168,5407.0
|
||||||
|
1.0,0.07,0.12405282528685863,0.6778523489932886,0.2766990291262136,149.0
|
||||||
|
1.5,0.07,0.09492028179458657,0.5804597701149425,0.27800829875518673,174.0
|
||||||
|
2.0,0.07,0.11432116270825948,0.554945054945055,0.2571428571428571,182.0
|
||||||
|
2.5,0.07,0.06734352910936897,0.40239043824701193,0.17973856209150327,251.0
|
||||||
|
3.0,0.07,0.053402005963675794,0.28291316526610644,0.13349514563106796,357.0
|
||||||
|
3.5,0.07,0.03186387228171605,0.20570264765784113,0.12321428571428572,491.0
|
||||||
|
4.0,0.07,0.0234468339307049,0.11689814814814815,0.06290672451193059,864.0
|
||||||
|
4.5,0.07,0.01270772238514174,0.08744588744588745,0.060211554109031735,1155.0
|
||||||
|
5.0,0.07,0.006274571064073525,0.04075867635189669,0.025560361777428233,2478.0
|
||||||
|
5.5,0.07,0.0028845455685591135,0.0206670759156947,0.013524424707307227,4887.0
|
||||||
|
1.0,0.08,0.182328190743338,0.7318840579710145,0.29949238578680204,138.0
|
||||||
|
1.5,0.08,0.12381129964572068,0.5838150289017341,0.24782608695652175,173.0
|
||||||
|
2.0,0.08,0.13440860215053763,0.5260416666666666,0.20987654320987653,192.0
|
||||||
|
2.5,0.08,0.09911772814998622,0.43162393162393164,0.1958762886597938,234.0
|
||||||
|
3.0,0.08,0.07541774640335984,0.27977839335180055,0.13842482100238662,361.0
|
||||||
|
3.5,0.08,0.06018882769472856,0.20528455284552846,0.11669658886894076,492.0
|
||||||
|
4.0,0.08,0.04350280032996136,0.13593539703903096,0.06775407779171895,743.0
|
||||||
|
4.5,0.08,0.030346963656133645,0.10316649642492338,0.06583969465648855,979.0
|
||||||
|
5.0,0.08,0.014361372859206273,0.04307036247334755,0.026567040265670402,2345.0
|
||||||
|
5.5,0.08,0.006640913568086678,0.024093511450381678,0.01526896875734085,4192.0
|
||||||
|
1.0,0.09,0.29746367889682346,0.7709923664122137,0.27624309392265195,131.0
|
||||||
|
1.5,0.09,0.22641509433962265,0.6352201257861635,0.2638888888888889,159.0
|
||||||
|
2.0,0.09,0.18493401759530792,0.5738636363636364,0.2314410480349345,176.0
|
||||||
|
2.5,0.09,0.19055861526357198,0.4926829268292683,0.21153846153846154,205.0
|
||||||
|
3.0,0.09,0.09714928732183045,0.2936046511627907,0.14640198511166252,344.0
|
||||||
|
3.5,0.09,0.0644494801386297,0.20867768595041322,0.12,484.0
|
||||||
|
4.0,0.09,0.059809624537281864,0.16557377049180327,0.08132530120481928,610.0
|
||||||
|
4.5,0.09,0.03724608669970138,0.10274669379450661,0.052986512524084775,983.0
|
||||||
|
5.0,0.09,0.02243519496303971,0.062384187770228534,0.031119090365050867,1619.0
|
||||||
|
5.5,0.09,0.012482709013445472,0.034648370497427104,0.015202702702702704,2915.0
|
||||||
|
1.0,0.1,0.34069478908188583,0.7769230769230769,0.26136363636363635,130.0
|
||||||
|
1.5,0.1,0.3058542413381123,0.7481481481481481,0.23295454545454544,135.0
|
||||||
|
2.0,0.1,0.2742878702131673,0.5906432748538012,0.21559633027522937,171.0
|
||||||
|
2.5,0.1,0.20332798131659613,0.45701357466063347,0.15648854961832062,221.0
|
||||||
|
3.0,0.1,0.14913510986442263,0.36594202898550726,0.14285714285714285,276.0
|
||||||
|
3.5,0.1,0.09198413292418232,0.23433874709976799,0.09832635983263599,431.0
|
||||||
|
4.0,0.1,0.08395293015631403,0.18330308529945555,0.08166666666666667,551.0
|
||||||
|
4.5,0.1,0.05740649699353326,0.11840562719812427,0.04049493813273341,853.0
|
||||||
|
5.0,0.1,0.03869453278812661,0.07902973395931143,0.028136882129277566,1278.0
|
||||||
|
5.5,0.1,0.0204410360212678,0.044631020768890854,0.01949740034662045,2263.0
|
||||||
|
1.0,0.11,0.44111027756939236,0.7829457364341085,0.26704545454545453,129.0
|
||||||
|
1.5,0.11,0.30016757436112274,0.6558441558441559,0.2413793103448276,154.0
|
||||||
|
2.0,0.11,0.285047677013593,0.6352201257861635,0.22815533980582525,159.0
|
||||||
|
2.5,0.11,0.2512272089761571,0.5489130434782609,0.19298245614035087,184.0
|
||||||
|
3.0,0.11,0.15604155276107162,0.3423728813559322,0.14985590778097982,295.0
|
||||||
|
3.5,0.11,0.1307300509337861,0.2657894736842105,0.10377358490566038,380.0
|
||||||
|
4.0,0.11,0.09022822433213422,0.1846435100548446,0.06495726495726496,547.0
|
||||||
|
4.5,0.11,0.06363750470691602,0.1309987029831388,0.04932182490752158,771.0
|
||||||
|
5.0,0.11,0.04158537563139749,0.08367854183927093,0.032852564102564104,1207.0
|
||||||
|
5.5,0.11,0.024072745376539324,0.04584657285519746,0.0160786065207682,2203.0
|
||||||
|
1.0,0.12,0.3686635944700461,0.8015873015873016,0.2840909090909091,126.0
|
||||||
|
1.5,0.12,0.3323888404533566,0.6824324324324325,0.24489795918367346,148.0
|
||||||
|
2.0,0.12,0.29266862170087976,0.6121212121212121,0.24311926605504589,165.0
|
||||||
|
2.5,0.12,0.23887096774193547,0.505,0.16666666666666666,200.0
|
||||||
|
3.0,0.12,0.1956177723676202,0.38113207547169814,0.14790996784565916,265.0
|
||||||
|
3.5,0.12,0.14758292972676598,0.28611898016997167,0.10632911392405063,353.0
|
||||||
|
4.0,0.12,0.11147035050334338,0.23006833712984054,0.09670781893004116,439.0
|
||||||
|
4.5,0.12,0.06464346349745331,0.13289473684210526,0.0594059405940594,760.0
|
||||||
|
5.0,0.12,0.05474095796676442,0.10202020202020202,0.03696498054474708,990.0
|
||||||
|
5.5,0.12,0.03271028037383177,0.05899532710280374,0.021714285714285714,1712.0
|
||||||
|
1.0,0.13,0.3831945889698231,0.8145161290322581,0.2832369942196532,124.0
|
||||||
|
1.5,0.13,0.3530340627114821,0.7062937062937062,0.27411167512690354,143.0
|
||||||
|
2.0,0.13,0.322372528616025,0.6516129032258065,0.27230046948356806,155.0
|
||||||
|
2.5,0.13,0.2628500531726338,0.554945054945055,0.2222222222222222,182.0
|
||||||
|
3.0,0.13,0.20543959519291588,0.396078431372549,0.1611842105263158,255.0
|
||||||
|
3.5,0.13,0.1576331582895724,0.2936046511627907,0.1134020618556701,344.0
|
||||||
|
4.0,0.13,0.14013883217639853,0.25569620253164554,0.10633484162895927,395.0
|
||||||
|
4.5,0.13,0.08928199791883455,0.1629032258064516,0.06766917293233082,620.0
|
||||||
|
5.0,0.13,0.0567049057097101,0.10233029381965553,0.03988326848249027,987.0
|
||||||
|
5.5,0.13,0.04593323449721384,0.08003169572107766,0.025482625482625483,1262.0
|
||||||
|
1.0,0.14,0.3830005120327701,0.8015873015873016,0.2840909090909091,126.0
|
||||||
|
1.5,0.14,0.35023041474654376,0.7593984962406015,0.2692307692307692,133.0
|
||||||
|
2.0,0.14,0.35659425060346717,0.6870748299319728,0.24615384615384617,147.0
|
||||||
|
2.5,0.14,0.28910856746444674,0.543010752688172,0.22821576763485477,186.0
|
||||||
|
3.0,0.14,0.18365102639296188,0.38257575757575757,0.1592356687898089,264.0
|
||||||
|
3.5,0.14,0.15388222055513878,0.2936046511627907,0.12020460358056266,344.0
|
||||||
|
4.0,0.14,0.14191927378829633,0.2537688442211055,0.1036036036036036,398.0
|
||||||
|
4.5,0.14,0.10066546356868937,0.17657342657342656,0.0848,572.0
|
||||||
|
5.0,0.14,0.06809621480514637,0.11676300578034682,0.04419889502762431,865.0
|
||||||
|
5.5,0.14,0.037988972344028135,0.06796769851951548,0.024294156270518712,1486.0
|
||||||
|
1.0,0.15,0.4050179211469534,0.8632478632478633,0.3352272727272727,117.0
|
||||||
|
1.5,0.15,0.3296728437428506,0.7163120567375887,0.29850746268656714,141.0
|
||||||
|
2.0,0.15,0.35769701919150676,0.6392405063291139,0.2882882882882883,158.0
|
||||||
|
2.5,0.15,0.29013611784449,0.5838150289017341,0.24782608695652175,173.0
|
||||||
|
3.0,0.15,0.21948924731182795,0.42083333333333334,0.2079207920792079,240.0
|
||||||
|
3.5,0.15,0.1787845080392355,0.3166144200626959,0.14016172506738545,319.0
|
||||||
|
4.0,0.15,0.11805555555555555,0.2337962962962963,0.11293634496919917,432.0
|
||||||
|
4.5,0.15,0.0756765020639046,0.15955766192733017,0.0718475073313783,633.0
|
||||||
|
5.0,0.15,0.06440677966101695,0.11412429378531073,0.04838709677419355,885.0
|
||||||
|
5.5,0.15,0.046331435800126504,0.08251633986928104,0.03622047244094488,1224.0
|
||||||
|
1.0,0.16,0.47146401985111663,0.8632478632478633,0.3352272727272727,117.0
|
||||||
|
1.5,0.16,0.3194971537001898,0.7426470588235294,0.3096446700507614,136.0
|
||||||
|
2.0,0.16,0.374910394265233,0.7481481481481481,0.3076923076923077,135.0
|
||||||
|
2.5,0.16,0.2666268418956591,0.6234567901234568,0.273542600896861,162.0
|
||||||
|
3.0,0.16,0.19184369263047468,0.4105691056910569,0.18,246.0
|
||||||
|
3.5,0.16,0.17089466541392628,0.3268608414239482,0.1510989010989011,309.0
|
||||||
|
4.0,0.16,0.13593282341203858,0.2603092783505155,0.12612612612612611,388.0
|
||||||
|
4.5,0.16,0.08454600785702429,0.1732418524871355,0.07313195548489666,583.0
|
||||||
|
5.0,0.16,0.06474681840901227,0.12038140643623362,0.05090497737556561,839.0
|
||||||
|
5.5,0.16,0.0342563516985441,0.06875425459496257,0.027796161482461945,1469.0
|
||||||
|
7
src/2025-05-08/res/bch_32_26_rx_fixed_point_random.csv
Normal file
7
src/2025-05-08/res/bch_32_26_rx_fixed_point_random.csv
Normal file
@ -0,0 +1,7 @@
|
|||||||
|
SNR,FER,BER,DFR,frame_errors
|
||||||
|
2.0,1.0,0.499032,0.895,200
|
||||||
|
4.0,1.0,0.480000,0.865,200
|
||||||
|
6.0,1.0,0.483710,0.885,200
|
||||||
|
8.0,1.0,0.478548,0.800,200
|
||||||
|
10.0,1.0,0.504516,0.575,200
|
||||||
|
12.0,1.0,0.500323,0.135,200
|
||||||
|
7
src/2025-05-08/res/bch_7_3_hc.csv
Normal file
7
src/2025-05-08/res/bch_7_3_hc.csv
Normal file
@ -0,0 +1,7 @@
|
|||||||
|
SNR,FER,num_errors,num_iterations
|
||||||
|
2.0, 0.341880, 0.187546, 0.186325, 200
|
||||||
|
4.0, 0.238949, 0.121010, 0.102748, 200
|
||||||
|
6.0, 0.120555, 0.051580, 0.035564, 200
|
||||||
|
8.0, 0.048614, 0.015973, 0.005348, 200
|
||||||
|
10.0, 0.015249, 0.004466, 0.000610, 200
|
||||||
|
12.0, 0.002916, 0.000846, 0.000000, 200
|
||||||
|
13
src/2025-05-08/res/check_regularity.py
Normal file
13
src/2025-05-08/res/check_regularity.py
Normal file
@ -0,0 +1,13 @@
|
|||||||
|
import sympy as sp
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
x1,x2,x3 = sp.symbols("x_1 x_2 x_3")
|
||||||
|
|
||||||
|
x = sp.Matrix([x1, x2, x3])
|
||||||
|
F = sp.Matrix([1 - x1**2, 1 - x2**2, 1 - x3**2, 1 - x1*x2, 1 - x1*x3])
|
||||||
|
print(F.jacobian(x))
|
||||||
|
print(F.jacobian(x).rank())
|
||||||
|
|
||||||
|
if __name__=="__main__":
|
||||||
|
main()
|
||||||
46
src/2025-05-08/res/gen_vec_fields.py
Normal file
46
src/2025-05-08/res/gen_vec_fields.py
Normal file
@ -0,0 +1,46 @@
|
|||||||
|
import numpy as np
|
||||||
|
import pandas as pd
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
|
def main():
|
||||||
|
def F(x1, x2):
|
||||||
|
return np.array([x1 + x2, x2 + 0.5])
|
||||||
|
|
||||||
|
def G(x1, x2):
|
||||||
|
return np.array([x1, x2])
|
||||||
|
|
||||||
|
def H(x1, x2, t):
|
||||||
|
return (1 - t) * G(x1, x2) + t * F(x1, x2)
|
||||||
|
|
||||||
|
# x = np.linspace(-1, 1, 10)
|
||||||
|
# y = np.linspace(-1, 1, 10)
|
||||||
|
# X1, X2 = np.meshgrid(x, y)
|
||||||
|
#
|
||||||
|
# fig, axes = plt.subplots(1, 4, figsize=(20, 4))
|
||||||
|
#
|
||||||
|
# for i, t in enumerate(np.linspace(0, 1, 4)):
|
||||||
|
# H_ = H(X1, X2, t)
|
||||||
|
# axes[i].quiver(X1, X2, *H_, color='r')
|
||||||
|
# axes[i].set_title(f't = {t}')
|
||||||
|
#
|
||||||
|
# plt.show()
|
||||||
|
|
||||||
|
df_dict = {"x1": [], "x2": [], "t": [], "H1": [], "H2": [], "Hmag": []}
|
||||||
|
|
||||||
|
for x1 in np.linspace(-1, 1, 10):
|
||||||
|
for x2 in np.linspace(-1, 1, 10):
|
||||||
|
for t in [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]:
|
||||||
|
df_dict["x1"].append(x1)
|
||||||
|
df_dict["x2"].append(x2)
|
||||||
|
df_dict["t"].append(t)
|
||||||
|
H_ = H(x1, x2, t)
|
||||||
|
df_dict["H1"].append(H_[0])
|
||||||
|
df_dict["H2"].append(H_[1])
|
||||||
|
df_dict["Hmag"].append(np.sqrt(H_[0]**2 + H_[1]**2))
|
||||||
|
|
||||||
|
df = pd.DataFrame(df_dict).sort_values(by=["t", "x2", "x1"])
|
||||||
|
|
||||||
|
df.to_csv("H.csv", index=False)
|
||||||
|
|
||||||
|
if __name__=="__main__":
|
||||||
|
main()
|
||||||
Loading…
Reference in New Issue
Block a user