cel-presentation/sections/theoretical_background.tex

188 lines
7.4 KiB
TeX
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

\section{Theoretical Background}%
\label{sec:Theoretical Background}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%\subsection{Motivation}%
%\label{sub:Motivation}
\begin{frame}[t]
\frametitle{Motivation}
\begin{itemize}
\item General ML decoding problem NP-complete \citereference{BMT78}
\item Iterative messagepassing algorithms popular in practice do not guarantee
optimality when the graph contains cycles \citereference{KTP19}
\item Standard message-passing algorithms difficult to analyze \citereference{FEL03}
\end{itemize}
\vspace{3.5cm}
\addreferences
{BMT78}{E. Berlekamp; R. McEliece; H. van Tilborg: \emph{On the inherent intractability
of certain coding problems (Corresp.)}.
IEEE Transactions on Information Theory 24.3 (May 1978), pp. 384386.}
{KTP19}{Banu Kabakulak; Z. Caner Taşkın; Ali Emre Pusane: \emph{Optimizationbased
decoding algorithms for LDPC convolutional codes in communication systems}.
IISE Transactions 51.10 (2019), pp. 10611074.}
{FEL03}{Jon Feldman: \emph{Decoding error-correcting codes via linear programming}.
PhD thesis. MIT, 2003.}
\stopreferences
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%\subsection{Presumptions}%
%\label{sub:Presumptions}
\begin{frame}[t]
\frametitle{Presumptions: Channel \& Modulation}
\tikzstyle{mapper} = [rectangle, minimum width=1.5cm, minimum height=0.7cm,
rounded corners=0.1cm, text centered, draw=black, fill=KITgreen!80]
\begin{figure}[htpb]
\centering
\begin{tikzpicture}[scale=1, transform shape]
\node (in) {$\boldsymbol{c}$};
\node[mapper, right=0.5cm of in] (bpskmap) {Mapper};
\node[right=1.5cm of bpskmap,
draw, circle, inner sep=0pt, minimum size=0.5cm] (add) {$+$};
\node[below=0.5cm of add] (noise) {$\boldsymbol{n}$};
\node[mapper, right=1.5cm of add] (decoder) {Decoder};
\node[mapper, right=1.5cm of decoder] (demapper) {Demapper};
\node[right=0.5cm of demapper] (out) {$\boldsymbol{\hat{c}}$};
\node at ($(bpskmap.east)!0.5!(add.west) + (0,0.3cm)$) {$\boldsymbol{x}$};
\node at ($(add.east)!0.5!(decoder.west) + (0,0.3cm)$) {$\boldsymbol{y}$};
\node at ($(decoder.east)!0.5!(demapper.west) + (0,0.3cm)$) {$\boldsymbol{\hat{x}}$};
\draw[->] (in) -- (bpskmap);
\draw[->] (bpskmap) -- (add);
\draw[->] (add) -- (decoder);
\draw[->] (noise) -- (add);
\draw[->] (decoder) -- (demapper);
\draw[->] (demapper) -- (out);
\end{tikzpicture}
\end{figure}
\begin{itemize}
\item All simulations are performed with BPSK:
\begin{align*}
\boldsymbol{x} = \left( -1 \right)^{\boldsymbol{c}},
\hspace{5mm} \boldsymbol{c} \in \mathbb{F}_2^n,
\hspace{2mm} \boldsymbol{x} \in \left\{ -1, 1 \right\}^n
\end{align*}
\item The channel model is AWGN:
\begin{align*}
\boldsymbol{y} = \boldsymbol{x} + \boldsymbol{n},
\hspace{5mm}\boldsymbol{n}\sim \mathcal{N}
\left(0,\frac{1}{2}\left(\frac{k}{n}\frac{E_b}{N_0}\right)^{-1}\right),
\hspace{2mm} \boldsymbol{y}, \boldsymbol{n} \in \mathbb{R}^n
\end{align*}
\item All-zeros assumption:
\begin{align*}
\boldsymbol{c} = \boldsymbol{0}
\end{align*}
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%\subsection{Optimization as a Decoding Method}%
%\label{sub:Optimization as a Decoding Method}
\begin{frame}[t]
\frametitle{Optimization as a Decoding Method}
\begin{minipage}[c]{0.6\linewidth}
\begin{itemize}
\item Reformulate decoding problem as optimization problem
\begin{itemize}
\item Establish objective function
\item Establish constraints
\end{itemize}
\item Use optimization method to solve the new problem
\end{itemize}
\vspace{5mm}
\begin{itemize}
\item Usage of ''$\sim$`` to denote change in domain, e.g.:
\end{itemize}
\vspace*{-2mm}
\hspace*{-10mm}
\begin{minipage}[c]{\textwidth}
\centering
\begin{align*}
\boldsymbol{c} \in \left\{ 0, 1 \right\}^n &\rightarrow
\tilde{\boldsymbol{c}} \in \left[ 0,1 \right]^n \\
\boldsymbol{x} \in \left\{ -1, 1 \right\}^n &\rightarrow
\tilde{\boldsymbol{x}} \in \mathbb{R}^n
\end{align*}
\end{minipage}
\end{minipage}%
\hfill%
\begin{minipage}[c]{0.4\linewidth}
\begin{figure}[H]
\centering
\tikzstyle{codeword} = [color=KITblue, fill=KITblue,
draw, circle, inner sep=0pt, minimum size=4pt]
\tdplotsetmaincoords{60}{245}
\begin{tikzpicture}[scale=1, transform shape, tdplot_main_coords]
\tikzstyle{every node}=[font=\normalsize]
% Cube
\draw[dashed] (0, 0, 0) -- (2, 0, 0);
\draw[dashed] (2, 0, 0) -- (2, 0, 2);
\draw[] (2, 0, 2) -- (0, 0, 2);
\draw[] (0, 0, 2) -- (0, 0, 0);
\draw[] (0, 2, 0) -- (2, 2, 0);
\draw[] (2, 2, 0) -- (2, 2, 2);
\draw[] (2, 2, 2) -- (0, 2, 2);
\draw[] (0, 2, 2) -- (0, 2, 0);
\draw[] (0, 0, 0) -- (0, 2, 0);
\draw[dashed] (2, 0, 0) -- (2, 2, 0);
\draw[] (2, 0, 2) -- (2, 2, 2);
\draw[] (0, 0, 2) -- (0, 2, 2);
% Codeword Polytope
% \draw[line width=1pt, color=KITblue] (0, 0, 0) -- (2, 0, 2);
% \draw[line width=1pt, color=KITblue] (0, 0, 0) -- (2, 2, 0);
% \draw[line width=1pt, color=KITblue] (0, 0, 0) -- (0, 2, 2);
% \draw[line width=1pt, color=KITblue] (2, 0, 2) -- (2, 2, 0);
% \draw[line width=1pt, color=KITblue] (2, 0, 2) -- (0, 2, 2);
% \draw[line width=1pt, color=KITblue] (0, 2, 2) -- (2, 2, 0);
% Polytope Annotations
\node[codeword] (c000) at (0, 0, 0) {};% {$\left( 0, 0, 0 \right) $};
\node[codeword] (c101) at (2, 0, 2) {};% {$\left( 1, 0, 1 \right) $};
\node[codeword] (c110) at (2, 2, 0) {};% {$\left( 1, 1, 0 \right) $};
\node[codeword] (c011) at (0, 2, 2) {};% {$\left( 0, 1, 1 \right) $};
\node[color=KITblue, right=0cm of c000] {$\left( 0, 0, 0 \right) $};
\node[color=KITblue, above=0cm of c101] {$\left( 1, 0, 1 \right) $};
\node[color=KITblue, left=0cm of c110] {$\left( 1, 1, 0 \right) $};
\node[color=KITblue, left=0cm of c011] {$\left( 0, 1, 1 \right) $};
% f
\node[color=KITgreen, fill=KITgreen,
draw, circle, inner sep=0pt, minimum size=4pt] (f) at (0.7, 0.7, 1) {};
\node[color=KITgreen, right=0cm of f] {$\tilde{\boldsymbol{c}}$};
\end{tikzpicture}
\end{figure}
\end{minipage}
\end{frame}