Compare commits
3 Commits
f45e6e2c1a
...
dac52007a7
| Author | SHA1 | Date | |
|---|---|---|---|
| dac52007a7 | |||
| f0a19a778a | |||
| 0c89a245b1 |
141
paper.tex
141
paper.tex
@ -244,11 +244,10 @@ unknown distribution, the test we chose to verify this observation is a Mann
|
||||
Whitney U test. We found that $S _\text{L}$ is faster than $S_\text{R}$ with a
|
||||
significance of $p < 0.0001$, while no significant statement could be made
|
||||
about $S_\text{R}$ and $S_\text{B}$.
|
||||
|
||||
Fig. \ref{fig:Behavior} shows the results of the behavioral measurement.
|
||||
During this part of the experiment, we also measured the time each participant
|
||||
needed to fill up their bottle. Using the measured flowrates we calculated
|
||||
the mean refill volume to be $\SI{673.92}{\milli\liter}$.
|
||||
% During this part of the experiment, we also measured the time each participant
|
||||
% needed to fill up their bottle. Using the measured flowrates we calculated
|
||||
% the mean refill volume to be $\SI{673.92}{\milli\liter}$.
|
||||
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
@ -256,16 +255,16 @@ the mean refill volume to be $\SI{673.92}{\milli\liter}$.
|
||||
|
||||
We can consider the water dispenser and students as comprising a queueing
|
||||
system, specifically an M/G/1 queue \cite{stewart_probability_2009}.
|
||||
The response time, i.e., the time spent waiting as well as
|
||||
The expected response time, i.e., the time spent waiting as well as
|
||||
the time dispensing water, is \cite[Section 14.3]{stewart_probability_2009}%
|
||||
\begin{align*}
|
||||
W = E\mleft\{ S \mright\} + \frac{\lambda E\mleft\{ S^2 \mright\}}{2\mleft( 1-\rho \mright)}
|
||||
,%
|
||||
\end{align*}%
|
||||
where $S$ denotes the service time (i.e., the time spent refilling a bottle),
|
||||
$\lambda$ the mean arrival time, and $\rho$ the system utilization. Using our
|
||||
experimental data we can approximate all parameters and calculate
|
||||
\todo{$W \approx 123$} (See the appendix for a complete derivation).
|
||||
$\lambda$ the mean arrival time, and $\rho = \lambda \cdot E\mleft\{ S \mright\}$ the system utilization. Using our
|
||||
experimental data we can approximate all parameters and obtain
|
||||
\todo{$W \approx 123$}.
|
||||
% We examine the effects of the choice of hydration strategy. To
|
||||
% this end, we start by estimating the potential time savings possible by always
|
||||
% choosing the fastest strategy:%
|
||||
@ -338,69 +337,69 @@ academic performance of KIT students: always pressing the right button.
|
||||
|
||||
\printbibliography
|
||||
|
||||
\appendix
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\section{Derivation of Service Time}
|
||||
\label{sec:Derivation of Service Time}
|
||||
|
||||
|
||||
We want to compute the response time of our queueing system, i.e.,
|
||||
\cite[Section 14.3]{stewart_probability_2009}
|
||||
\begin{align*}
|
||||
W = E\mleft\{ S \mright\} + \frac{\lambda E\mleft\{ S^2 \mright\}}{2\mleft( 1-\rho \mright)}
|
||||
.%
|
||||
\end{align*}%
|
||||
We start by modelling the service time and subsequently calculate $\lambda$
|
||||
and $\rho$.
|
||||
|
||||
Let $S, V$ and $R$ be random variables denoting the service time, refill volume
|
||||
and refill rate, respectively. Assuming that $V$ and $R$ are independent, we
|
||||
have
|
||||
\begin{gather*}
|
||||
S = \frac{V}{R} \hspace{5mm} \text{and} \hspace{5mm}
|
||||
P_R(r) = \left\{\begin{array}{rl}
|
||||
P(S_\text{L}), & r = r_{S_\text{L}} \\
|
||||
1-P(S_\text{L}), & r = r_{S_\text{R}}
|
||||
\end{array}\right.
|
||||
\end{gather*}%
|
||||
\begin{align*}
|
||||
E\mleft\{ S^2 \mright\} &= E\mleft\{ V^2 \mright\}E\mleft\{ 1 / R^2 \mright\} \\
|
||||
& = E\mleft\{ V^2 \mright\} \mleft( P(S_\text{L})\frac{1}{r^2_{S_\text{L}}} + \mleft( 1 - P(S_\text{L}) \mright)\frac{1}{r^2_{S_\text{R}}} \mright)
|
||||
.%
|
||||
\end{align*}
|
||||
We now use our experimental data (having calculated $v_n, n\in [1:N]$ from the
|
||||
measured fill times and flow rates) to compute
|
||||
\begin{align*}
|
||||
\left.
|
||||
\begin{array}{r}
|
||||
E\mleft\{ V^2 \mright\} \approx \frac{1}{N+1} \sum_{n=1}^{N} v_n^2 = \todo{15}\\
|
||||
P(S_\text{L}) \approx \frac{\text{\# times $S_\text{L}$ was chosen}}{N} = \todo{123} \\
|
||||
r^2_{S_\text{L}} \approx \todo{125} \\
|
||||
r^2_{S_\text{R}} \approx \todo{250}
|
||||
\end{array}
|
||||
\right\} \Rightarrow
|
||||
\left\{
|
||||
\begin{array}{l}
|
||||
E\mleft\{ S \mright\} \approx \todo{678} \\
|
||||
E\mleft\{ S^2 \mright\} \approx \todo{123}
|
||||
\end{array}
|
||||
\right.
|
||||
.%
|
||||
\end{align*}
|
||||
|
||||
$\lambda$ is the mean arrival time.
|
||||
|
||||
\todo{
|
||||
\textbf{TODOs:}
|
||||
\begin{itemize}
|
||||
\item Complete text describing / obtaining $\rho$ and $\lambda$
|
||||
\item Move model derivation to method section
|
||||
\item Move calculations with model to results section
|
||||
\item Add grade gain derivation
|
||||
\item Idea: Make the whole thing 2 pages and print on A3
|
||||
\end{itemize}
|
||||
}
|
||||
% \appendix
|
||||
%
|
||||
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% \section{Derivation of Service Time}
|
||||
% \label{sec:Derivation of Service Time}
|
||||
%
|
||||
%
|
||||
% We want to compute the response time of our queueing system, i.e.,
|
||||
% \cite[Section 14.3]{stewart_probability_2009}
|
||||
% \begin{align*}
|
||||
% W = E\mleft\{ S \mright\} + \frac{\lambda E\mleft\{ S^2 \mright\}}{2\mleft( 1-\rho \mright)}
|
||||
% .%
|
||||
% \end{align*}%
|
||||
% We start by modelling the service time and subsequently calculate $\lambda$
|
||||
% and $\rho$.
|
||||
%
|
||||
% Let $S, V$ and $R$ be random variables denoting the service time, refill volume
|
||||
% and refill rate, respectively. Assuming that $V$ and $R$ are independent, we
|
||||
% have
|
||||
% \begin{gather*}
|
||||
% S = \frac{V}{R} \hspace{5mm} \text{and} \hspace{5mm}
|
||||
% P_R(r) = \left\{\begin{array}{rl}
|
||||
% P(S_\text{L}), & r = r_{S_\text{L}} \\
|
||||
% 1-P(S_\text{L}), & r = r_{S_\text{R}}
|
||||
% \end{array}\right.
|
||||
% \end{gather*}%
|
||||
% \begin{align*}
|
||||
% E\mleft\{ S^2 \mright\} &= E\mleft\{ V^2 \mright\}E\mleft\{ 1 / R^2 \mright\} \\
|
||||
% & = E\mleft\{ V^2 \mright\} \mleft( P(S_\text{L})\frac{1}{r^2_{S_\text{L}}} + \mleft( 1 - P(S_\text{L}) \mright)\frac{1}{r^2_{S_\text{R}}} \mright)
|
||||
% .%
|
||||
% \end{align*}
|
||||
% We now use our experimental data (having calculated $v_n, n\in [1:N]$ from the
|
||||
% measured fill times and flow rates) to compute
|
||||
% \begin{align*}
|
||||
% \left.
|
||||
% \begin{array}{r}
|
||||
% E\mleft\{ V^2 \mright\} \approx \frac{1}{N+1} \sum_{n=1}^{N} v_n^2 = \todo{15}\\
|
||||
% P(S_\text{L}) \approx \frac{\text{\# times $S_\text{L}$ was chosen}}{N} = \todo{123} \\
|
||||
% r^2_{S_\text{L}} \approx \todo{125} \\
|
||||
% r^2_{S_\text{R}} \approx \todo{250}
|
||||
% \end{array}
|
||||
% \right\} \Rightarrow
|
||||
% \left\{
|
||||
% \begin{array}{l}
|
||||
% E\mleft\{ S \mright\} \approx \todo{678} \\
|
||||
% E\mleft\{ S^2 \mright\} \approx \todo{123}
|
||||
% \end{array}
|
||||
% \right.
|
||||
% .%
|
||||
% \end{align*}
|
||||
%
|
||||
% $\lambda$ is the mean arrival time.
|
||||
%
|
||||
% \todo{
|
||||
% \textbf{TODOs:}
|
||||
% \begin{itemize}
|
||||
% \item Complete text describing / obtaining $\rho$ and $\lambda$
|
||||
% \item Move model derivation to method section
|
||||
% \item Move calculations with model to results section
|
||||
% \item Add grade gain derivation
|
||||
% \item Idea: Make the whole thing 2 pages and print on A3
|
||||
% \end{itemize}
|
||||
% }
|
||||
|
||||
|
||||
\end{document}
|
||||
|
||||
Loading…
Reference in New Issue
Block a user