Remove commented out text

This commit is contained in:
Andreas Tsouchlos 2025-05-30 00:04:51 -04:00
parent d38f934123
commit de8d63293d

141
paper.tex
View File

@ -126,8 +126,6 @@ Effect of the Choice of Hydration Strategy on Average Academic Performance}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% \vspace*{-10mm}
\begin{abstract} \begin{abstract}
We evaluate the relationship between hydration strategy and We evaluate the relationship between hydration strategy and
academic performance and project that by using the right button of academic performance and project that by using the right button of
@ -179,14 +177,6 @@ and $S_\text{B}$ pressing both buttons.
For the system measurement $10$ datapoints were recorded for each strategy, For the system measurement $10$ datapoints were recorded for each strategy,
for the behavioural measurement $113$ in total. for the behavioural measurement $113$ in total.
% As is always the case with measurements, care must be taken not to alter
% quantities by measuring them. To this end, we made sure only to take system
% measurements in the absence of participants and to only record data on the
% behaviour of participants discreetly.
% TODO: Describe the actual measurement setup? (e.g., filling up a 0.7l bottle
% and timing with a standard smartphone timer)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Experimental Results} \section{Experimental Results}
@ -235,9 +225,6 @@ Whitney U test. We found that $S _\text{L}$ is faster than $S_\text{R}$ with a
significance of $p < 0.0001$, while no significant statement could be made significance of $p < 0.0001$, while no significant statement could be made
about $S_\text{R}$ and $S_\text{B}$. about $S_\text{R}$ and $S_\text{B}$.
Fig. \ref{fig:Behavior} shows the results of the behavioural measurement. Fig. \ref{fig:Behavior} shows the results of the behavioural measurement.
% During this part of the experiment, we also measured the time each participant
% needed to fill up their bottle. Using the measured flowrates we calculated
% the mean refill volume to be $\SI{673.92}{\milli\liter}$.
\begin{figure}[H] \begin{figure}[H]
\centering \centering
@ -289,42 +276,6 @@ S \mright\}$ the system utilization. Using our
experimental data we can approximate all parameters and obtain experimental data we can approximate all parameters and obtain
$W \approx \SI{23.3}{\second}$. The difference to always using $W \approx \SI{23.3}{\second}$. The difference to always using
the fastest strategy amounts to $\SI{4.14}{\second}$. the fastest strategy amounts to $\SI{4.14}{\second}$.
% We examine the effects of the choice of hydration strategy. To
% this end, we start by estimating the potential time savings possible by always
% choosing the fastest strategy:%
% %
% % We can model the time needed for one person to refill their
% bottle as a random
% % variable (RV) $T_1 = V/R$ and the time saved by choosing the
% fastest strategy
% % as $\Delta T_1 = T_1 - V/\max r$, where $V$ and $R$ are RVs representing the
% % bottle volume and flowrate. The potential time saving for the
% last person in a
% % queue of $N$ people is thus $\Delta T_N = N\cdot\Delta T_1$. We
% can then model
% % the total time savings as $\Delta T_\text{tot} = \sum_{n=1}^{N} \Delta T_n$,
% % where N is an RV describing the queue length. Assuming the
% independence of all
% % RVs we can compute the mean total time savings as
% %
% \begin{gather*}
% T_1 = V/R, \hspace{3mm} \Delta T_1 = T_1 - V/\max R,
% \hspace{3mm} \Delta T_n = n \cdot \Delta T_1 \\
% \Delta T_\text{tot} = \sum_{n=1}^{N} \Delta T_\text{n} =
% \sum_{n=1}^{N} n \cdot \Delta T_1 = \Delta T_1 \frac{N\mleft( N+1
% \mright)}{2} \\
% \Delta t := E\mleft\{ \Delta T_\text{tot} \mright\} = E\mleft\{
% \Delta T_1 \mright\} \cdot \mleft[ E\mleft\{ N^2 \mright\} +
% E\mleft\{ N \mright\} \mright]/2
% ,%
% \end{gather*}
% %
% where $V$ and $R$ are random variables (RVs) representing the volume of a
% bottle and the flowrate, $\Delta T_n$ describes the time the last of $n$
% people saves, $\Delta T_\text{tot}$ the total time savings and $N$ the length
% of the queue. It is plausible to assume independence of $R,V$ and $N$.
% Using our experimental measurements we estimate $\todo{\Delta t =
% \SI{20}{\second}}$
Strangely, it is the consensus of current research that there is only Strangely, it is the consensus of current research that there is only
a weak relationship between academic performance and hours studied a weak relationship between academic performance and hours studied
@ -342,18 +293,6 @@ arrival process and the relationship between the response time gain
the grade gain. Nevertheless, we believe this work serves as a solid the grade gain. Nevertheless, we believe this work serves as a solid
first step on the path towards achieving optimal study behaviour. first step on the path towards achieving optimal study behaviour.
% Many attempts have been made in the literature to relate
% the time spent studying to academic achievement - see, e.g.
% \cite{schuman_effort_1985, zulauf_use_1999, michaels_academic_1989,
% dickinson_effect_1990}.
% The overwhelming consensus is that there is a significant relationship,
% though it is a weak one.
%
%Many of the studies were only performed over
% a period of one week or even day, so we believe care should be taken when
% generlizing these results. Nevertheless, the overwhelming consensus in the
% literature is that a significant relationship exists, though it is a weak one.
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%% % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \section{Conclusion} % \section{Conclusion}
@ -365,15 +304,6 @@ improvement of up to $0.00103$ levels. We thus propose a novel and
broadly applicable strategy to boost the average academic performance broadly applicable strategy to boost the average academic performance
of KIT students: always using the right button. of KIT students: always using the right button.
% Further research is needed to develop a better model of how the choice of
% hydration strategy is related to academic performance. We
% suspect that there is a compounding effect that leads to $S_\text{L}$ being an
% even worse choice of hydration strategy: When the queue is long, students are
% less likely to refill their empty water bottles, leading to reduced mental
% ability. Nevertheless, we believe that with this work we have laid a solid
% foundation and hope that our results will find widespread acceptance among the
% local student population.
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Bibliography % Bibliography
@ -382,75 +312,4 @@ of KIT students: always using the right button.
\printbibliography \printbibliography
% \appendix
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \section{Derivation of Service Time}
% \label{sec:Derivation of Service Time}
%
%
% We want to compute the response time of our queueing system, i.e.,
% \cite[Section 14.3]{stewart_probability_2009}
% \begin{align*}
% W = E\mleft\{ S \mright\} + \frac{\lambda E\mleft\{ S^2
% \mright\}}{2\mleft( 1-\rho \mright)}
% .%
% \end{align*}%
% We start by modelling the service time and subsequently calculate $\lambda$
% and $\rho$.
%
% Let $S, V$ and $R$ be random variables denoting the service time,
% refill volume
% and refill rate, respectively. Assuming that $V$ and $R$ are independent, we
% have
% \begin{gather*}
% S = \frac{V}{R} \hspace{5mm} \text{and} \hspace{5mm}
% P_R(r) = \left\{\begin{array}{rl}
% P(S_\text{L}), & r = r_{S_\text{L}} \\
% 1-P(S_\text{L}), & r = r_{S_\text{R}}
% \end{array}\right.
% \end{gather*}%
% \begin{align*}
% E\mleft\{ S^2 \mright\} &= E\mleft\{ V^2 \mright\}E\mleft\{ 1 /
% R^2 \mright\} \\
% & = E\mleft\{ V^2 \mright\} \mleft(
% P(S_\text{L})\frac{1}{r^2_{S_\text{L}}} + \mleft( 1 - P(S_\text{L})
% \mright)\frac{1}{r^2_{S_\text{R}}} \mright)
% .%
% \end{align*}
% We now use our experimental data (having calculated $v_n, n\in [1:N]$ from the
% measured fill times and flow rates) to compute
% \begin{align*}
% \left.
% \begin{array}{r}
% E\mleft\{ V^2 \mright\} \approx \frac{1}{N+1}
% \sum_{n=1}^{N} v_n^2 = \todo{15}\\
% P(S_\text{L}) \approx \frac{\text{\# times $S_\text{L}$ was
% chosen}}{N} = \todo{123} \\
% r^2_{S_\text{L}} \approx \todo{125} \\
% r^2_{S_\text{R}} \approx \todo{250}
% \end{array}
% \right\} \Rightarrow
% \left\{
% \begin{array}{l}
% E\mleft\{ S \mright\} \approx \todo{678} \\
% E\mleft\{ S^2 \mright\} \approx \todo{123}
% \end{array}
% \right.
% .%
% \end{align*}
%
% $\lambda$ is the mean arrival time.
%
% \todo{
% \textbf{TODOs:}
% \begin{itemize}
% \item Complete text describing / obtaining $\rho$ and $\lambda$
% \item Move model derivation to method section
% \item Move calculations with model to results section
% \item Add grade gain derivation
% \item Idea: Make the whole thing 2 pages and print on A3
% \end{itemize}
% }
\end{document} \end{document}