Formatting
This commit is contained in:
parent
dac52007a7
commit
c6fed725f9
95
paper.tex
95
paper.tex
@ -1,6 +1,5 @@
|
||||
\documentclass[journal]{IEEEtran}
|
||||
|
||||
|
||||
\usepackage{amsmath,amsfonts}
|
||||
\usepackage{float}
|
||||
\usepackage{algorithmic}
|
||||
@ -16,7 +15,6 @@
|
||||
sorting=nty,
|
||||
]{biblatex}
|
||||
|
||||
|
||||
\usepackage{tikz}
|
||||
\usetikzlibrary{spy, arrows.meta,arrows}
|
||||
|
||||
@ -29,14 +27,12 @@
|
||||
|
||||
\hyphenation{op-tical net-works semi-conduc-tor IEEE-Xplore}
|
||||
|
||||
|
||||
%
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% Inputs & Global Options
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%
|
||||
|
||||
|
||||
%
|
||||
% Figures
|
||||
%
|
||||
@ -67,27 +63,22 @@
|
||||
\addbibresource{paper.bib}
|
||||
\AtBeginBibliography{\footnotesize}
|
||||
|
||||
|
||||
%
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% Title, Header, Footer, etc.
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%
|
||||
|
||||
|
||||
\newcommand\todo[1]{\textcolor{red}{#1}}
|
||||
|
||||
|
||||
%
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% Title, Header, Footer, etc.
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%
|
||||
|
||||
|
||||
\begin{document}
|
||||
|
||||
|
||||
\title{The Effect of the Choice of Hydration Strategy on Average Academic
|
||||
Performance}
|
||||
|
||||
@ -101,14 +92,12 @@
|
||||
|
||||
\maketitle
|
||||
|
||||
|
||||
%
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% Abstract & Index Terms
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%
|
||||
|
||||
|
||||
\begin{abstract}
|
||||
We evaluate the \todo{\ldots} and project that by using the right button of
|
||||
the water dispenser to fill up their water bottles, students can potentially
|
||||
@ -120,17 +109,14 @@
|
||||
KIT Library, Academic Performance, Hydration
|
||||
\end{IEEEkeywords}
|
||||
|
||||
|
||||
%
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% Content
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%
|
||||
|
||||
|
||||
\vspace*{-1mm}
|
||||
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\section{Introduction}
|
||||
|
||||
@ -147,7 +133,6 @@ In this work, we quantify this relationship in the context of studying at the
|
||||
KIT library and subsequently develop a novel and broadly applicable strategy
|
||||
to leverage it to improve the academic performance of KIT students.
|
||||
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\section{Experimental Setup}
|
||||
|
||||
@ -170,11 +155,9 @@ for the behavioral measurement $113$ in total.
|
||||
% TODO: Describe the actual measurement setup? (e.g., filling up a 0.7l bottle
|
||||
% and timing with a standard smartphone timer)
|
||||
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\section{Experimental Results}
|
||||
|
||||
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
|
||||
@ -185,7 +168,8 @@ for the behavioral measurement $113$ in total.
|
||||
boxplot/draw direction = x,
|
||||
grid,
|
||||
ytick = {1, 2, 3},
|
||||
yticklabels = {$S_\text{B}$ (Both buttons), $S_\text{R}$ (Right button), $S_\text{L}$ (Left button)},
|
||||
yticklabels = {$S_\text{B}$ (Both buttons),
|
||||
$S_\text{R}$ (Right button), $S_\text{L}$ (Left button)},
|
||||
xlabel = {Flowrate (\si{\milli\litre\per\second})},
|
||||
]
|
||||
\addplot[boxplot, fill, scol1, draw=black]
|
||||
@ -204,7 +188,8 @@ for the behavioral measurement $113$ in total.
|
||||
|
||||
\vspace*{-3mm}
|
||||
|
||||
\caption{Flow rate of the water dispenser depending on the hydration strategy.}
|
||||
\caption{Flow rate of the water dispenser depending on the
|
||||
hydration strategy.}
|
||||
\label{fig:System}
|
||||
\end{figure}
|
||||
|
||||
@ -222,10 +207,13 @@ for the behavioral measurement $113$ in total.
|
||||
grid,
|
||||
ymin = 0,
|
||||
enlarge x limits=0.3,
|
||||
xticklabels = {\footnotesize{$S_\text{L}$ (Left button)}, \footnotesize{$S_\text{R}$ (Right button)}, \footnotesize{$S_\text{B}$} (Both buttons)},
|
||||
xticklabels = {\footnotesize{$S_\text{L}$ (Left
|
||||
button)}, \footnotesize{$S_\text{R}$ (Right
|
||||
button)}, \footnotesize{$S_\text{B}$} (Both buttons)},
|
||||
ylabel = {No. chosen},
|
||||
]
|
||||
\addplot+[ybar,mark=no,fill=scol1] table[skip first n=1, col sep=comma, x=button, y=count]
|
||||
\addplot+[ybar,mark=no,fill=scol1] table[skip first n=1,
|
||||
col sep=comma, x=button, y=count]
|
||||
{res/left_right_distribution.csv};
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
@ -236,7 +224,6 @@ for the behavioral measurement $113$ in total.
|
||||
\label{fig:Behavior}
|
||||
\end{figure}
|
||||
|
||||
|
||||
Fig. \ref{fig:System} shows the results of the system measurement.
|
||||
We observe that $S_\text{L}$ is the slowest strategy, while $S_\text{R}$
|
||||
and $S_\text{B}$ are similar. Due to the small sample size and the
|
||||
@ -249,7 +236,6 @@ Fig. \ref{fig:Behavior} shows the results of the behavioral measurement.
|
||||
% needed to fill up their bottle. Using the measured flowrates we calculated
|
||||
% the mean refill volume to be $\SI{673.92}{\milli\liter}$.
|
||||
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\section{Discussion}
|
||||
|
||||
@ -258,30 +244,42 @@ system, specifically an M/G/1 queue \cite{stewart_probability_2009}.
|
||||
The expected response time, i.e., the time spent waiting as well as
|
||||
the time dispensing water, is \cite[Section 14.3]{stewart_probability_2009}%
|
||||
\begin{align*}
|
||||
W = E\mleft\{ S \mright\} + \frac{\lambda E\mleft\{ S^2 \mright\}}{2\mleft( 1-\rho \mright)}
|
||||
W = E\mleft\{ S \mright\} + \frac{\lambda E\mleft\{ S^2
|
||||
\mright\}}{2\mleft( 1-\rho \mright)}
|
||||
,%
|
||||
\end{align*}%
|
||||
where $S$ denotes the service time (i.e., the time spent refilling a bottle),
|
||||
$\lambda$ the mean arrival time, and $\rho = \lambda \cdot E\mleft\{ S \mright\}$ the system utilization. Using our
|
||||
$\lambda$ the mean arrival time, and $\rho = \lambda \cdot E\mleft\{
|
||||
S \mright\}$ the system utilization. Using our
|
||||
experimental data we can approximate all parameters and obtain
|
||||
\todo{$W \approx 123$}.
|
||||
% We examine the effects of the choice of hydration strategy. To
|
||||
% this end, we start by estimating the potential time savings possible by always
|
||||
% choosing the fastest strategy:%
|
||||
% %
|
||||
% % We can model the time needed for one person to refill their bottle as a random
|
||||
% % variable (RV) $T_1 = V/R$ and the time saved by choosing the fastest strategy
|
||||
% % We can model the time needed for one person to refill their
|
||||
% bottle as a random
|
||||
% % variable (RV) $T_1 = V/R$ and the time saved by choosing the
|
||||
% fastest strategy
|
||||
% % as $\Delta T_1 = T_1 - V/\max r$, where $V$ and $R$ are RVs representing the
|
||||
% % bottle volume and flowrate. The potential time saving for the last person in a
|
||||
% % queue of $N$ people is thus $\Delta T_N = N\cdot\Delta T_1$. We can then model
|
||||
% % bottle volume and flowrate. The potential time saving for the
|
||||
% last person in a
|
||||
% % queue of $N$ people is thus $\Delta T_N = N\cdot\Delta T_1$. We
|
||||
% can then model
|
||||
% % the total time savings as $\Delta T_\text{tot} = \sum_{n=1}^{N} \Delta T_n$,
|
||||
% % where N is an RV describing the queue length. Assuming the independence of all
|
||||
% % where N is an RV describing the queue length. Assuming the
|
||||
% independence of all
|
||||
% % RVs we can compute the mean total time savings as
|
||||
% %
|
||||
% \begin{gather*}
|
||||
% T_1 = V/R, \hspace{3mm} \Delta T_1 = T_1 - V/\max R, \hspace{3mm} \Delta T_n = n \cdot \Delta T_1 \\
|
||||
% \Delta T_\text{tot} = \sum_{n=1}^{N} \Delta T_\text{n} = \sum_{n=1}^{N} n \cdot \Delta T_1 = \Delta T_1 \frac{N\mleft( N+1 \mright)}{2} \\
|
||||
% \Delta t := E\mleft\{ \Delta T_\text{tot} \mright\} = E\mleft\{ \Delta T_1 \mright\} \cdot \mleft[ E\mleft\{ N^2 \mright\} + E\mleft\{ N \mright\} \mright]/2
|
||||
% T_1 = V/R, \hspace{3mm} \Delta T_1 = T_1 - V/\max R,
|
||||
% \hspace{3mm} \Delta T_n = n \cdot \Delta T_1 \\
|
||||
% \Delta T_\text{tot} = \sum_{n=1}^{N} \Delta T_\text{n} =
|
||||
% \sum_{n=1}^{N} n \cdot \Delta T_1 = \Delta T_1 \frac{N\mleft( N+1
|
||||
% \mright)}{2} \\
|
||||
% \Delta t := E\mleft\{ \Delta T_\text{tot} \mright\} = E\mleft\{
|
||||
% \Delta T_1 \mright\} \cdot \mleft[ E\mleft\{ N^2 \mright\} +
|
||||
% E\mleft\{ N \mright\} \mright]/2
|
||||
% ,%
|
||||
% \end{gather*}
|
||||
% %
|
||||
@ -289,11 +287,13 @@ experimental data we can approximate all parameters and obtain
|
||||
% bottle and the flowrate, $\Delta T_n$ describes the time the last of $n$
|
||||
% people saves, $\Delta T_\text{tot}$ the total time savings and $N$ the length
|
||||
% of the queue. It is plausible to assume independence of $R,V$ and $N$.
|
||||
% Using our experimental measurements we estimate $\todo{\Delta t = \SI{20}{\second}}$
|
||||
% Using our experimental measurements we estimate $\todo{\Delta t =
|
||||
% \SI{20}{\second}}$
|
||||
|
||||
Many attempts have been made in the literature to relate the time spent
|
||||
studying to academic achievement - see, e.g.
|
||||
\cite{schuman_effort_1985, zulauf_use_1999, michaels_academic_1989, dickinson_effect_1990}.
|
||||
\cite{schuman_effort_1985, zulauf_use_1999, michaels_academic_1989,
|
||||
dickinson_effect_1990}.
|
||||
The overwhelming consensus is that there is a significant relationship,
|
||||
though it is a weak one.
|
||||
%
|
||||
@ -306,11 +306,9 @@ though it is a weak one.
|
||||
% generlizing these results. Nevertheless, the overwhelming consensus in the
|
||||
% literature is that a significant relationship exists, though it is a weak one.
|
||||
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\section{Conclusion}
|
||||
|
||||
|
||||
In this study, we investigated how the choice of hydration strategy affects
|
||||
the average academic performance. We found that always choosing to
|
||||
press the right button leads to an average time gain of \todo{\SI{10}{\second}}
|
||||
@ -327,14 +325,12 @@ academic performance of KIT students: always pressing the right button.
|
||||
% foundation and hope that our results will find widespread acceptance among the
|
||||
% local student population.
|
||||
|
||||
|
||||
%
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% Bibliography
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%
|
||||
|
||||
|
||||
\printbibliography
|
||||
|
||||
% \appendix
|
||||
@ -347,13 +343,15 @@ academic performance of KIT students: always pressing the right button.
|
||||
% We want to compute the response time of our queueing system, i.e.,
|
||||
% \cite[Section 14.3]{stewart_probability_2009}
|
||||
% \begin{align*}
|
||||
% W = E\mleft\{ S \mright\} + \frac{\lambda E\mleft\{ S^2 \mright\}}{2\mleft( 1-\rho \mright)}
|
||||
% W = E\mleft\{ S \mright\} + \frac{\lambda E\mleft\{ S^2
|
||||
% \mright\}}{2\mleft( 1-\rho \mright)}
|
||||
% .%
|
||||
% \end{align*}%
|
||||
% We start by modelling the service time and subsequently calculate $\lambda$
|
||||
% and $\rho$.
|
||||
%
|
||||
% Let $S, V$ and $R$ be random variables denoting the service time, refill volume
|
||||
% Let $S, V$ and $R$ be random variables denoting the service time,
|
||||
% refill volume
|
||||
% and refill rate, respectively. Assuming that $V$ and $R$ are independent, we
|
||||
% have
|
||||
% \begin{gather*}
|
||||
@ -364,8 +362,11 @@ academic performance of KIT students: always pressing the right button.
|
||||
% \end{array}\right.
|
||||
% \end{gather*}%
|
||||
% \begin{align*}
|
||||
% E\mleft\{ S^2 \mright\} &= E\mleft\{ V^2 \mright\}E\mleft\{ 1 / R^2 \mright\} \\
|
||||
% & = E\mleft\{ V^2 \mright\} \mleft( P(S_\text{L})\frac{1}{r^2_{S_\text{L}}} + \mleft( 1 - P(S_\text{L}) \mright)\frac{1}{r^2_{S_\text{R}}} \mright)
|
||||
% E\mleft\{ S^2 \mright\} &= E\mleft\{ V^2 \mright\}E\mleft\{ 1 /
|
||||
% R^2 \mright\} \\
|
||||
% & = E\mleft\{ V^2 \mright\} \mleft(
|
||||
% P(S_\text{L})\frac{1}{r^2_{S_\text{L}}} + \mleft( 1 - P(S_\text{L})
|
||||
% \mright)\frac{1}{r^2_{S_\text{R}}} \mright)
|
||||
% .%
|
||||
% \end{align*}
|
||||
% We now use our experimental data (having calculated $v_n, n\in [1:N]$ from the
|
||||
@ -373,8 +374,10 @@ academic performance of KIT students: always pressing the right button.
|
||||
% \begin{align*}
|
||||
% \left.
|
||||
% \begin{array}{r}
|
||||
% E\mleft\{ V^2 \mright\} \approx \frac{1}{N+1} \sum_{n=1}^{N} v_n^2 = \todo{15}\\
|
||||
% P(S_\text{L}) \approx \frac{\text{\# times $S_\text{L}$ was chosen}}{N} = \todo{123} \\
|
||||
% E\mleft\{ V^2 \mright\} \approx \frac{1}{N+1}
|
||||
% \sum_{n=1}^{N} v_n^2 = \todo{15}\\
|
||||
% P(S_\text{L}) \approx \frac{\text{\# times $S_\text{L}$ was
|
||||
% chosen}}{N} = \todo{123} \\
|
||||
% r^2_{S_\text{L}} \approx \todo{125} \\
|
||||
% r^2_{S_\text{R}} \approx \todo{250}
|
||||
% \end{array}
|
||||
@ -401,6 +404,4 @@ academic performance of KIT students: always pressing the right button.
|
||||
% \end{itemize}
|
||||
% }
|
||||
|
||||
|
||||
\end{document}
|
||||
|
||||
|
||||
Loading…
Reference in New Issue
Block a user