Add mean bottle size, mathematical model
This commit is contained in:
parent
be1f0aa784
commit
3181b2ac4e
106
paper.tex
106
paper.tex
@ -159,10 +159,13 @@ of the choice of hydration strategy of the participants: $S_\text{L}$ denotes
|
|||||||
pressing the left button of the water dispenser, $S_\text{R}$ the right one,
|
pressing the left button of the water dispenser, $S_\text{R}$ the right one,
|
||||||
and $S_\text{B}$ pressing both buttons.
|
and $S_\text{B}$ pressing both buttons.
|
||||||
|
|
||||||
As is always the case with measurements, care must be taken not to alter
|
For the system measurement $10$ datapoints were recorded for each strategy,
|
||||||
quantities by measuring them. To this end, we made sure only to take system
|
for the behavioral measurement it was $113$ in total.
|
||||||
measurements in the absence of participants and to only record data on the
|
|
||||||
behaviour of participants discreetly.
|
% As is always the case with measurements, care must be taken not to alter
|
||||||
|
% quantities by measuring them. To this end, we made sure only to take system
|
||||||
|
% measurements in the absence of participants and to only record data on the
|
||||||
|
% behaviour of participants discreetly.
|
||||||
|
|
||||||
% TODO: Describe the actual measurement setup? (e.g., filling up a 0.7l bottle
|
% TODO: Describe the actual measurement setup? (e.g., filling up a 0.7l bottle
|
||||||
% and timing with a standard smartphone timer)
|
% and timing with a standard smartphone timer)
|
||||||
@ -177,8 +180,8 @@ behaviour of participants discreetly.
|
|||||||
|
|
||||||
\begin{tikzpicture}
|
\begin{tikzpicture}
|
||||||
\begin{axis}[
|
\begin{axis}[
|
||||||
width=0.85\columnwidth,
|
width=0.8\columnwidth,
|
||||||
height=0.4\columnwidth,
|
height=0.35\columnwidth,
|
||||||
boxplot/draw direction = x,
|
boxplot/draw direction = x,
|
||||||
grid,
|
grid,
|
||||||
ytick = {1, 2, 3},
|
ytick = {1, 2, 3},
|
||||||
@ -199,11 +202,13 @@ behaviour of participants discreetly.
|
|||||||
\end{axis}
|
\end{axis}
|
||||||
\end{tikzpicture}
|
\end{tikzpicture}
|
||||||
|
|
||||||
\caption{Flow rate of the water dispenser depending on the button pressed.}
|
\vspace*{-3mm}
|
||||||
|
|
||||||
|
\caption{Flow rate of the water dispenser depending on the hydration strategy.}
|
||||||
\label{fig:System}
|
\label{fig:System}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
|
|
||||||
\begin{figure}[H]
|
\begin{figure}
|
||||||
\centering
|
\centering
|
||||||
|
|
||||||
\begin{tikzpicture}
|
\begin{tikzpicture}
|
||||||
@ -211,31 +216,39 @@ behaviour of participants discreetly.
|
|||||||
ybar,
|
ybar,
|
||||||
bar width=15mm,
|
bar width=15mm,
|
||||||
width=\columnwidth,
|
width=\columnwidth,
|
||||||
height=0.4\columnwidth,
|
height=0.35\columnwidth,
|
||||||
area style,
|
area style,
|
||||||
xtick = {0, 1, 2},
|
xtick = {0, 1, 2},
|
||||||
grid,
|
grid,
|
||||||
ymin = 0,
|
ymin = 0,
|
||||||
enlarge x limits=0.3,
|
enlarge x limits=0.3,
|
||||||
xticklabels = {Left button, Right button, Both buttons},
|
xticklabels = {\footnotesize{$S_\text{L}$ (Left button)}, \footnotesize{$S_\text{R}$ (Right button)}, \footnotesize{$S_\text{B}$} (Both buttons)},
|
||||||
ylabel = {No. of presses},
|
ylabel = {No. chosen},
|
||||||
]
|
]
|
||||||
\addplot+[ybar,mark=no,fill=scol1] table[skip first n=1, col sep=comma, x=button, y=count]
|
\addplot+[ybar,mark=no,fill=scol1] table[skip first n=1, col sep=comma, x=button, y=count]
|
||||||
{res/left_right_distribution.csv};
|
{res/left_right_distribution.csv};
|
||||||
\end{axis}
|
\end{axis}
|
||||||
\end{tikzpicture}
|
\end{tikzpicture}
|
||||||
|
|
||||||
|
\vspace*{-3mm}
|
||||||
|
|
||||||
\caption{Distribution of the choice of hydration strategy.}
|
\caption{Distribution of the choice of hydration strategy.}
|
||||||
\label{fig:Behavior}
|
\label{fig:Behavior}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
|
|
||||||
Fig. \ref{fig:System} indicates that $S_\text{L}$ is the slowest
|
|
||||||
strategy, while $S_\text{R}$ and $S_\text{B}$ are similar.
|
Fig. \ref{fig:System} shows the results of the system measurement.
|
||||||
Due to the small sample size ($N=10$) and the unknown distribution, the test
|
We observe that $S_\text{L}$ is the slowest strategy, while $S_\text{R}$
|
||||||
we chose to verify this observation is a Mann-Whitney U test. We found that
|
and $S_\text{B}$ are similar. Due to the small sample size and the
|
||||||
$S _\text{L}$ is faster than $S_\text{R}$ with a significance of $p < 0.0001$,
|
unknown distribution, the test we chose to verify this observation is a Mann
|
||||||
while no significant statement could be made about $S_\text{R}$ and
|
Whitney U test. We found that $S _\text{L}$ is faster than $S_\text{R}$ with a
|
||||||
$S_\text{B}$.
|
significance of $p < 0.0001$, while no significant statement could be made
|
||||||
|
about $S_\text{R}$ and $S_\text{B}$.
|
||||||
|
|
||||||
|
Fig. \ref{fig:Behavior} shows the results of the behavioral measurement.
|
||||||
|
During this part of the experiment, we also measured the time each participant
|
||||||
|
needed to fill up their bottle. Using the measured flowrates we calculated
|
||||||
|
the mean bottle size to be $\SI{673.92}{\milli\liter}$.
|
||||||
|
|
||||||
|
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
@ -243,25 +256,40 @@ $S_\text{B}$.
|
|||||||
|
|
||||||
|
|
||||||
We examine the effects of the choice of hydration strategy. To
|
We examine the effects of the choice of hydration strategy. To
|
||||||
this end, we first estimate the amount of time saved by choosing a certain
|
this end, we start by estimating the potential time savings possible by always
|
||||||
strategy and relate that to a possible gain in academic performance, i.e.,
|
choosing the fastest strategy:%
|
||||||
grades.%
|
|
||||||
%
|
%
|
||||||
\todo{
|
% We can model the time needed for one person to refill their bottle as a random
|
||||||
\begin{itemize}
|
% variable (RV) $T_1 = V/R$ and the time saved by choosing the fastest strategy
|
||||||
\item ``We measured the average bottle size''
|
% as $\Delta T_1 = T_1 - V/\max r$, where $V$ and $R$ are RVs representing the
|
||||||
\item Quantify relationship: Compute average time saving by using right
|
% bottle volume and flowrate. The potential time saving for the last person in a
|
||||||
button $\rightarrow$ translate into grade gain
|
% queue of $N$ people is thus $\Delta T_N = N\cdot\Delta T_1$. We can then model
|
||||||
\item People using the left button slow down the entire queue
|
% the total time savings as $\Delta T_\text{tot} = \sum_{n=1}^{N} \Delta T_n$,
|
||||||
behind them, not only themselves
|
% where N is an RV describing the queue length. Assuming the independence of all
|
||||||
\end{itemize}
|
% RVs we can compute the mean total time savings as
|
||||||
}%
|
%
|
||||||
|
\begin{gather*}
|
||||||
|
T_1 = V/R, \hspace{3mm} \Delta T_1 = T_1 - V/\max r, \hspace{3mm} \Delta T_n = n \cdot \Delta T_1 \\
|
||||||
|
\Delta T_\text{tot} = \sum_{n=1}^{N} \Delta T_\text{n} = \sum_{n=1}^{N} n \cdot \Delta T_1 = \Delta T_1 \frac{N\mleft( N+1 \mright)}{2} \\
|
||||||
|
E\mleft\{ \Delta T_\text{tot} \mright\} = E\mleft\{ \Delta T_1 \mright\} \cdot \mleft[ E\mleft\{ N^2 \mright\} + E\mleft\{ N \mright\} \mright]/2
|
||||||
|
,%
|
||||||
|
\end{gather*}
|
||||||
|
%
|
||||||
|
where $V$ and $R$ are random variables (RVs) representing the volume of a
|
||||||
|
bottle and the flowrate, $\Delta T_n$ describes the time the last of $n$
|
||||||
|
people saves, $\Delta T_\text{tot}$ the total time savings and $N$ the length
|
||||||
|
of the queue. It is plausible to assume independence of $R,V$ and $N$.
|
||||||
|
|
||||||
Many attempts have been made in the literature to relate the time spent
|
Many attempts have been made in the literature to relate the time spent
|
||||||
studying to academic achievement - see, e.g.
|
studying to academic achievement - see, e.g.
|
||||||
\cite{schuman_effort_1985, zulauf_use_1999, michaels_academic_1989, dickinson_effect_1990}.
|
\cite{schuman_effort_1985, zulauf_use_1999, michaels_academic_1989, dickinson_effect_1990}.
|
||||||
The overwhelming consensus is that there is a significant relationship,
|
The overwhelming consensus is that there is a significant relationship,
|
||||||
though it is a weak one.
|
though it is a weak one.
|
||||||
|
%
|
||||||
|
\todo{
|
||||||
|
\begin{itemize}
|
||||||
|
\item Compute possible grade gain
|
||||||
|
\end{itemize}}
|
||||||
%Many of the studies were only performed over
|
%Many of the studies were only performed over
|
||||||
% a period of one week or even day, so we believe care should be taken when
|
% a period of one week or even day, so we believe care should be taken when
|
||||||
% generlizing these results. Nevertheless, the overwhelming consensus in the
|
% generlizing these results. Nevertheless, the overwhelming consensus in the
|
||||||
@ -273,20 +301,20 @@ though it is a weak one.
|
|||||||
|
|
||||||
|
|
||||||
In this study, we investigated how the choice of hydration strategy affects
|
In this study, we investigated how the choice of hydration strategy affects
|
||||||
the average academic performance of a student. We found that always choosing to
|
the average academic performance. We found that always choosing to
|
||||||
press the right button leads to an average time gain of \todo{\SI{10}{\second}}
|
press the right button leads to an average time gain of \todo{\SI{10}{\second}}
|
||||||
per day, which translates into a grade improvement of $\todo{0.001}$ levels.
|
per day, which translates into a grade improvement of $\todo{0.001}$ levels.
|
||||||
We thus propose a novel and broadly applicable strategy to boost the average
|
We thus propose a novel and broadly applicable strategy to boost the average
|
||||||
academic performance of KIT students: always pressing the right button.
|
academic performance of KIT students: always pressing the right button.
|
||||||
|
|
||||||
Further research is needed to develop a better model of how the choice of
|
% Further research is needed to develop a better model of how the choice of
|
||||||
hydration strategy is related to academic performance. We
|
% hydration strategy is related to academic performance. We
|
||||||
suspect that there is a compounding effect that leads to $S_\text{L}$ being an
|
% suspect that there is a compounding effect that leads to $S_\text{L}$ being an
|
||||||
even worse choice of hydration strategy: When the queue is long, students are
|
% even worse choice of hydration strategy: When the queue is long, students are
|
||||||
less likely to refill their empty water bottles, leading to reduced mental
|
% less likely to refill their empty water bottles, leading to reduced mental
|
||||||
ability. Nevertheless, we believe that with this work we have laid a solid
|
% ability. Nevertheless, we believe that with this work we have laid a solid
|
||||||
foundation and hope that our results will find widespread acceptance among the
|
% foundation and hope that our results will find widespread acceptance among the
|
||||||
local student population.
|
% local student population.
|
||||||
|
|
||||||
|
|
||||||
%
|
%
|
||||||
|
|||||||
114
res/full_participant_measurement.csv
Normal file
114
res/full_participant_measurement.csv
Normal file
@ -0,0 +1,114 @@
|
|||||||
|
time,button
|
||||||
|
28,left
|
||||||
|
22,left
|
||||||
|
17,left
|
||||||
|
40,left
|
||||||
|
24,left
|
||||||
|
41,left
|
||||||
|
11,left
|
||||||
|
11,left
|
||||||
|
26.56,left
|
||||||
|
37,left
|
||||||
|
30,left
|
||||||
|
30,left
|
||||||
|
8,left
|
||||||
|
21,left
|
||||||
|
20,left
|
||||||
|
19,left
|
||||||
|
28,left
|
||||||
|
20,left
|
||||||
|
21,left
|
||||||
|
16.43,left
|
||||||
|
16,left
|
||||||
|
29,left
|
||||||
|
20,left
|
||||||
|
24,left
|
||||||
|
22,left
|
||||||
|
15,left
|
||||||
|
13,left
|
||||||
|
22,left
|
||||||
|
23,left
|
||||||
|
40,left
|
||||||
|
19.8,left
|
||||||
|
35.38,left
|
||||||
|
21,left
|
||||||
|
16.3,left
|
||||||
|
29.3,left
|
||||||
|
30.3,left
|
||||||
|
30.2,left
|
||||||
|
25,left
|
||||||
|
14,left
|
||||||
|
14.1,left
|
||||||
|
40,left
|
||||||
|
24.4,left
|
||||||
|
5.2,left
|
||||||
|
50,left
|
||||||
|
29.7,left
|
||||||
|
39,left
|
||||||
|
17,left
|
||||||
|
40.7,left
|
||||||
|
27.3,left
|
||||||
|
19.8,left
|
||||||
|
7.55,right
|
||||||
|
14,right
|
||||||
|
9,right
|
||||||
|
13,right
|
||||||
|
5,right
|
||||||
|
13,right
|
||||||
|
13.58,right
|
||||||
|
15.58,right
|
||||||
|
25,right
|
||||||
|
20,right
|
||||||
|
14,right
|
||||||
|
13,right
|
||||||
|
14,right
|
||||||
|
13.3,right
|
||||||
|
19,right
|
||||||
|
13,right
|
||||||
|
10,right
|
||||||
|
15,right
|
||||||
|
14,right
|
||||||
|
19.4,right
|
||||||
|
12.8,right
|
||||||
|
13.5,right
|
||||||
|
19.31,right
|
||||||
|
27.5,right
|
||||||
|
13.1,right
|
||||||
|
23.6,right
|
||||||
|
15,right
|
||||||
|
18.7,right
|
||||||
|
18,right
|
||||||
|
12.7,right
|
||||||
|
40.3,right
|
||||||
|
12.86,right
|
||||||
|
22.9,right
|
||||||
|
10,right
|
||||||
|
20,right
|
||||||
|
12,right
|
||||||
|
19,right
|
||||||
|
39.8,right
|
||||||
|
20,both
|
||||||
|
20,both
|
||||||
|
15,both
|
||||||
|
19,both
|
||||||
|
13,both
|
||||||
|
7,both
|
||||||
|
15,both
|
||||||
|
17.3,both
|
||||||
|
12,both
|
||||||
|
23,both
|
||||||
|
11.26,both
|
||||||
|
35.66,both
|
||||||
|
13.54,both
|
||||||
|
27.81,both
|
||||||
|
16.83,both
|
||||||
|
17.13,both
|
||||||
|
17.8,both
|
||||||
|
39,both
|
||||||
|
11,both
|
||||||
|
13.6,both
|
||||||
|
21.7,both
|
||||||
|
14.25,both
|
||||||
|
12,both
|
||||||
|
12.9,both
|
||||||
|
12.35,both
|
||||||
|
45
scripts/calculate_mean_bottle_size.py
Normal file
45
scripts/calculate_mean_bottle_size.py
Normal file
@ -0,0 +1,45 @@
|
|||||||
|
import numpy as np
|
||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
|
||||||
|
filename_participants = "res/full_participant_measurement.csv"
|
||||||
|
|
||||||
|
filename_left = "res/flowrate_left.csv"
|
||||||
|
filename_right = "res/flowrate_right.csv"
|
||||||
|
filename_both = "res/flowrate_both.csv"
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
# Get bottle fillup times
|
||||||
|
|
||||||
|
df_part = pd.read_csv(filename_participants)
|
||||||
|
|
||||||
|
times_left = np.array(df_part[df_part["button"] == "left"]["time"])
|
||||||
|
times_right = np.array(df_part[df_part["button"] == "right"]["time"])
|
||||||
|
times_both = np.array(df_part[df_part["button"] == "both"]["time"])
|
||||||
|
|
||||||
|
# Get mean flowrates
|
||||||
|
|
||||||
|
df_left = pd.read_csv(filename_left)
|
||||||
|
df_right = pd.read_csv(filename_right)
|
||||||
|
df_both = pd.read_csv(filename_both)
|
||||||
|
|
||||||
|
flowrate_left = np.mean(np.array(df_left["flowrate"]))
|
||||||
|
flowrate_right = np.mean(np.array(df_right["flowrate"]))
|
||||||
|
flowrate_both = np.mean(np.array(df_both["flowrate"]))
|
||||||
|
|
||||||
|
# Calculate mean bottle size
|
||||||
|
|
||||||
|
sizes_left = times_left * flowrate_left
|
||||||
|
sizes_right = times_right * flowrate_right
|
||||||
|
sizes_both = times_both * flowrate_both
|
||||||
|
|
||||||
|
sizes = np.concatenate([sizes_left, sizes_right, sizes_both])
|
||||||
|
|
||||||
|
mean_size = np.mean(sizes)
|
||||||
|
|
||||||
|
print(f"Mean bottle size: {mean_size}")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
||||||
@ -16,7 +16,7 @@ def main():
|
|||||||
flowrate_right = np.array(df_right["flowrate"])
|
flowrate_right = np.array(df_right["flowrate"])
|
||||||
|
|
||||||
df_both = pd.read_csv(filename_both)
|
df_both = pd.read_csv(filename_both)
|
||||||
flowrate_both = np.array(df_right["flowrate"])
|
flowrate_both = np.array(df_both["flowrate"])
|
||||||
|
|
||||||
U_lr, p_lr = mannwhitneyu(flowrate_left, flowrate_both, method="exact")
|
U_lr, p_lr = mannwhitneyu(flowrate_left, flowrate_both, method="exact")
|
||||||
U_rb, p_rb = mannwhitneyu(flowrate_right, flowrate_both, method="exact")
|
U_rb, p_rb = mannwhitneyu(flowrate_right, flowrate_both, method="exact")
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user