115 lines
4.1 KiB
Python
115 lines
4.1 KiB
Python
"""This file contains utility functions relating to tests and simulations of the decoders."""
|
|
|
|
import numpy as np
|
|
import typing
|
|
from tqdm import tqdm
|
|
from timeit import default_timer
|
|
|
|
from utility import noise
|
|
|
|
|
|
def count_bit_errors(d: np.array, d_hat: np.array) -> int:
|
|
"""Count the number of wrong bits in a decoded codeword.
|
|
|
|
:param d: Originally sent data
|
|
:param d_hat: Received data
|
|
:return: Number of bit errors
|
|
"""
|
|
return np.sum(d != d_hat)
|
|
|
|
|
|
def test_decoder(n: int,
|
|
k: int,
|
|
decoder: typing.Any,
|
|
SNRs: typing.Sequence[float] = np.linspace(1, 7, 7),
|
|
target_frame_errors: int = 100,
|
|
N_max: int = 10000) \
|
|
-> typing.Tuple[np.array, np.array]:
|
|
"""Calculate the Bit Error Rate (BER) for a given decoder for a number of SNRs.
|
|
|
|
This function assumes the all-zeros assumption holds. Progress is printed to stdout.
|
|
|
|
:param n: Length of a codeword of the used code (n_cols of the H-matrix)
|
|
:param k: Length of a dataword of the used code (n_rows of the H-matrix)
|
|
:param decoder: Instance of the decoder to be tested
|
|
:param SNRs: List of SNRs for which the BER should be calculated
|
|
:param target_frame_errors: Number of frame errors after which to stop the simulation
|
|
:param N_max: Maximum number of iterations to perform for each SNR
|
|
:return: Tuple of numpy arrays of the form (SNRs, BERs)
|
|
"""
|
|
|
|
x = np.zeros(n)
|
|
x_bpsk = 1 - 2 * x # Map x from [0, 1]^n to [-1, 1]^n
|
|
|
|
BERs = []
|
|
for SNR in tqdm(SNRs,
|
|
desc=f"Calculating BERs for {decoder.__class__.__name__}",
|
|
position=1,
|
|
leave=False,
|
|
bar_format="{l_bar}{bar}| {n_fmt}/{total_fmt}"):
|
|
|
|
total_bit_errors = 0
|
|
total_bits = 0
|
|
total_frame_errors = 0
|
|
|
|
for n in tqdm(range(N_max),
|
|
desc=f"Simulating for SNR = {SNR} dB",
|
|
position=2,
|
|
leave=False,
|
|
bar_format="{l_bar}{bar}| {n_fmt}/{total_fmt}"):
|
|
|
|
# Simulate channel
|
|
y = noise.add_awgn(x_bpsk, SNR, signal_amp=np.sqrt(2))
|
|
|
|
# Decode received frame
|
|
x_hat = decoder.decode(y)
|
|
|
|
# Calculate statistics
|
|
total_bit_errors += count_bit_errors(x, x_hat)
|
|
total_bits += x.size
|
|
total_frame_errors += 1 if total_bit_errors > 0 else 0
|
|
|
|
if total_frame_errors >= target_frame_errors:
|
|
break
|
|
|
|
BERs.append(total_bit_errors / total_bits)
|
|
|
|
return np.array(SNRs), np.array(BERs)
|
|
|
|
|
|
def test_decoders(n: int,
|
|
k: int,
|
|
decoders: typing.List,
|
|
SNRs: typing.Sequence[float] = np.linspace(1, 7, 7),
|
|
target_frame_errors: int = 100,
|
|
N_max: int = 10000) \
|
|
-> typing.Tuple[np.array, np.array]:
|
|
"""Calculate the Bit Error Rate (BER) for a number of given decoders for a number of SNRs.
|
|
|
|
This function assumes the all-zeros assumption holds. Progress is printed to stdout.
|
|
|
|
:param n: Length of a codeword of the used code (n_cols of the H-matrix)
|
|
:param k: Length of a dataword of the used code (n_rows of the H-matrix)
|
|
:param decoders: List of decoder objects to be tested
|
|
:param SNRs: List of SNRs for which the BER should be calculated
|
|
:param target_frame_errors: Number of frame errors after which to stop the simulation
|
|
:param N_max: Maximum number of iterations to perform for each SNR
|
|
:return: Tuple of the form (SNRs, [BERs_1, BERs_2, ...]) where SNR and BERs_x are numpy arrays
|
|
"""
|
|
result_BERs = []
|
|
|
|
start_time = default_timer()
|
|
|
|
for decoder in tqdm(decoders,
|
|
desc="Calculating the answer to life, the universe and everything",
|
|
position=0,
|
|
leave=False,
|
|
bar_format="{l_bar}{bar}| {n_fmt}/{total_fmt}"):
|
|
_, BERs = test_decoder(n, k, decoder, SNRs, target_frame_errors, N_max)
|
|
result_BERs.append(BERs)
|
|
|
|
end_time = default_timer()
|
|
print(f"Elapsed time: {end_time - start_time:.2f}s")
|
|
|
|
return SNRs, result_BERs
|