191 lines
7.3 KiB
TeX
191 lines
7.3 KiB
TeX
\section{Theoretical Background}%
|
||
\label{sec:Theoretical Background}
|
||
|
||
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
\subsection{Motivation}%
|
||
\label{sub:Motivation}
|
||
|
||
\begin{frame}[t]
|
||
\frametitle{Motivation}
|
||
\begin{itemize}
|
||
\item The general [ML] decoding problem for linear codes and the general problem
|
||
of finding the weights of a linear code are both NP-complete. \cite{ml_np_hard_proof}
|
||
\item The iterative message–passing algorithms preferred in practice do not guarantee
|
||
optimality and may fail to decode correctly when the graph contains cycles.
|
||
\cite{ldpc_conv}
|
||
\item The standard message-passing algorithms used for decoding [LDPC and turbo codes]
|
||
are often difficult to analyze. \cite{feldman_thesis}
|
||
|
||
\end{itemize}
|
||
\end{frame}
|
||
|
||
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
\begin{frame}[t]
|
||
\frametitle{Previous work}
|
||
\begin{figure}[h]
|
||
\centering
|
||
|
||
\begin{subfigure}{0.33\textwidth}
|
||
\centering
|
||
|
||
\fbox{\includegraphics[page=1,width=.6\textwidth]{res/Bachelor_Thesis_Yanxia_Lu}}
|
||
\end{subfigure}%
|
||
\begin{subfigure}{0.33\textwidth}
|
||
\centering
|
||
|
||
\fbox{\includegraphics[page=25,width=.6\textwidth]{res/Bachelor_Thesis_Yanxia_Lu}}
|
||
\end{subfigure}%
|
||
\begin{subfigure}{0.33\textwidth}
|
||
\centering
|
||
|
||
\fbox{\includegraphics[page=60,width=.6\textwidth]{res/Bachelor_Thesis_Yanxia_Lu}}
|
||
\end{subfigure}%
|
||
|
||
\caption{Bachelor's Thesis by Yanxia Lu \cite{yanxia_lu_thesis}}
|
||
\end{figure}
|
||
|
||
\begin{itemize}
|
||
\item Examination of ``Proximal Decoding''
|
||
\item Examination of ``Interior Point Decoding''
|
||
\end{itemize}
|
||
\end{frame}
|
||
|
||
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
\subsection{Presumptions}%
|
||
\label{sub:Presumptions}
|
||
|
||
\begin{frame}[t]
|
||
\frametitle{Presumptions: Channel \& Modulation}
|
||
|
||
\tikzstyle{mapper} = [rectangle, minimum width=1.5cm, minimum height=0.7cm,
|
||
rounded corners=0.1cm, text centered, draw=black, fill=KITgreen!80]
|
||
\begin{figure}[htpb]
|
||
\centering
|
||
|
||
\begin{tikzpicture}[scale=1, transform shape]
|
||
\node (in) {$\boldsymbol{c}$};
|
||
\node[mapper, right=0.5cm of in] (bpskmap) {Mapper};
|
||
\node[right=1.5cm of bpskmap,
|
||
draw, circle, inner sep=0pt, minimum size=0.5cm] (add) {$+$};
|
||
\node[below=0.5cm of add] (noise) {$\boldsymbol{z}$};
|
||
\node[mapper, right=1.5cm of add] (decoder) {Decoder};
|
||
\node[mapper, right=1.5cm of decoder] (demapper) {Demapper};
|
||
\node[right=0.5cm of demapper] (out) {$\boldsymbol{\hat{c}}$};
|
||
|
||
\node at ($(bpskmap.east)!0.5!(add.west) + (0,0.3cm)$) {$\boldsymbol{x}$};
|
||
\node at ($(add.east)!0.5!(decoder.west) + (0,0.3cm)$) {$\boldsymbol{y}$};
|
||
\node at ($(decoder.east)!0.5!(demapper.west) + (0,0.3cm)$) {$\boldsymbol{\hat{x}}$};
|
||
|
||
\draw[->] (in) -- (bpskmap);
|
||
\draw[->] (bpskmap) -- (add);
|
||
\draw[->] (add) -- (decoder);
|
||
\draw[->] (noise) -- (add);
|
||
\draw[->] (decoder) -- (demapper);
|
||
\draw[->] (demapper) -- (out);
|
||
\end{tikzpicture}
|
||
\end{figure}
|
||
|
||
\begin{itemize}
|
||
\item All simulations are performed with BPSK modulation:
|
||
\begin{align*}
|
||
\boldsymbol{x} = \left( -1 \right)^{\boldsymbol{c}},
|
||
\hspace{5mm} \boldsymbol{c} \in \mathbb{F}_2^n
|
||
\end{align*}
|
||
\item The used channel model is AWGN:
|
||
\begin{align*}
|
||
\boldsymbol{y} = \boldsymbol{x} + \boldsymbol{z},
|
||
\hspace{5mm}\boldsymbol{z}\sim \mathcal{N}
|
||
\left(0,\frac{1}{2}\left(\frac{k}{n}\frac{E_b}{N_0}\right)^{-1}\right),
|
||
\hspace{2mm} \boldsymbol{y}, \boldsymbol{z} \in \mathbb{R}^n
|
||
\end{align*}
|
||
\item All-zeros assumption:
|
||
\begin{align*}
|
||
\boldsymbol{c} = \boldsymbol{0}
|
||
\end{align*}
|
||
\end{itemize}
|
||
\end{frame}
|
||
|
||
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
\subsection{Optimization as a Decoding Method}%
|
||
\label{sub:Optimization as a Decoding Method}
|
||
|
||
\begin{frame}[t]
|
||
\frametitle{Optimization as a Decoding Method}
|
||
|
||
\begin{minipage}[c]{0.6\linewidth}
|
||
\begin{itemize}
|
||
\item Reformulate decoding problem as optimization problem
|
||
\begin{itemize}
|
||
\item Establish objective function
|
||
\item Establish constraints
|
||
\end{itemize}
|
||
\item Use optimization method to solve the new problem
|
||
\end{itemize}
|
||
\end{minipage}%
|
||
\hfill%
|
||
\begin{minipage}[c]{0.4\linewidth}
|
||
\begin{figure}[H]
|
||
\centering
|
||
|
||
\tikzstyle{codeword} = [color=KITblue, fill=KITblue,
|
||
draw, circle, inner sep=0pt, minimum size=4pt]
|
||
|
||
\tdplotsetmaincoords{60}{245}
|
||
\begin{tikzpicture}[scale=1, transform shape, tdplot_main_coords]
|
||
% Cube
|
||
|
||
\draw[dashed] (0, 0, 0) -- (2, 0, 0);
|
||
\draw[dashed] (2, 0, 0) -- (2, 0, 2);
|
||
\draw[] (2, 0, 2) -- (0, 0, 2);
|
||
\draw[] (0, 0, 2) -- (0, 0, 0);
|
||
|
||
\draw[] (0, 2, 0) -- (2, 2, 0);
|
||
\draw[] (2, 2, 0) -- (2, 2, 2);
|
||
\draw[] (2, 2, 2) -- (0, 2, 2);
|
||
\draw[] (0, 2, 2) -- (0, 2, 0);
|
||
|
||
\draw[] (0, 0, 0) -- (0, 2, 0);
|
||
\draw[dashed] (2, 0, 0) -- (2, 2, 0);
|
||
\draw[] (2, 0, 2) -- (2, 2, 2);
|
||
\draw[] (0, 0, 2) -- (0, 2, 2);
|
||
|
||
% Codeword Polytope
|
||
|
||
% \draw[line width=1pt, color=KITblue] (0, 0, 0) -- (2, 0, 2);
|
||
% \draw[line width=1pt, color=KITblue] (0, 0, 0) -- (2, 2, 0);
|
||
% \draw[line width=1pt, color=KITblue] (0, 0, 0) -- (0, 2, 2);
|
||
|
||
% \draw[line width=1pt, color=KITblue] (2, 0, 2) -- (2, 2, 0);
|
||
% \draw[line width=1pt, color=KITblue] (2, 0, 2) -- (0, 2, 2);
|
||
|
||
% \draw[line width=1pt, color=KITblue] (0, 2, 2) -- (2, 2, 0);
|
||
|
||
% Polytope Annotations
|
||
|
||
\node[codeword] (c000) at (0, 0, 0) {};% {$\left( 0, 0, 0 \right) $};
|
||
\node[codeword] (c101) at (2, 0, 2) {};% {$\left( 1, 0, 1 \right) $};
|
||
\node[codeword] (c110) at (2, 2, 0) {};% {$\left( 1, 1, 0 \right) $};
|
||
\node[codeword] (c011) at (0, 2, 2) {};% {$\left( 0, 1, 1 \right) $};
|
||
|
||
\node[color=KITblue, right=0cm of c000] {$\left( 0, 0, 0 \right) $};
|
||
\node[color=KITblue, above=0cm of c101] {$\left( 1, 0, 1 \right) $};
|
||
\node[color=KITblue, left=0cm of c110] {$\left( 1, 1, 0 \right) $};
|
||
\node[color=KITblue, left=0cm of c011] {$\left( 0, 1, 1 \right) $};
|
||
|
||
% f
|
||
|
||
\node[color=KITgreen, fill=KITgreen,
|
||
draw, circle, inner sep=0pt, minimum size=4pt] (f) at (0.7, 0.7, 1) {};
|
||
\node[color=KITgreen, right=0cm of f] {$\boldsymbol{f}$};
|
||
\end{tikzpicture}
|
||
|
||
\caption{Hypercube ($n=3$) with valid codewords}
|
||
\end{figure}
|
||
\end{minipage}
|
||
\end{frame}
|
||
|