285 lines
11 KiB
TeX
285 lines
11 KiB
TeX
\chapter{Theoretical Background}%
|
|
\label{chapter:theoretical_background}
|
|
|
|
In this chapter, the theoretical background necessary to understand this
|
|
work is given.
|
|
First, the used notation is clarified.
|
|
The physical aspects are detailed - the used modulation scheme and channel model.
|
|
A short introduction of channel coding with binary linear codes and especially
|
|
\ac{LDPC} codes is given.
|
|
The established methods of decoding LPDC codes are briefly explained.
|
|
Lastly, the optimization methods utilized are described.
|
|
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
\section{Notation}
|
|
\label{sec:theo:Notation}
|
|
|
|
%
|
|
% TODOs
|
|
%
|
|
|
|
\begin{itemize}
|
|
\item General remarks on notation (matrices, \ldots)
|
|
\item Probabilistic quantities (random variables, \acp{PDF}, pdfs vs pmfs vs cdfs, \ldots)
|
|
\end{itemize}
|
|
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
\section{Preliminaries: Channel Model and Modulation}
|
|
\label{sec:theo:Preliminaries: Channel Model and Modulation}
|
|
|
|
%
|
|
% TODOs
|
|
%
|
|
|
|
\begin{itemize}
|
|
\item \Ac{AWGN}
|
|
\item \Ac{BPSK}
|
|
\end{itemize}
|
|
|
|
%
|
|
% Figure showing notation for entire coding / decoding process
|
|
%
|
|
|
|
\tikzstyle{box} = [rectangle, minimum width=1.5cm, minimum height=0.7cm,
|
|
rounded corners=0.1cm, text centered, draw=black, fill=KITgreen!80]
|
|
\begin{figure}[htpb]
|
|
\centering
|
|
|
|
\begin{tikzpicture}[scale=1, transform shape]
|
|
\node (in) {$\boldsymbol{c}$};
|
|
\node[box, right=0.5cm of in] (bpskmap) {Mapper};
|
|
\node[right=1.5cm of bpskmap,
|
|
draw, circle, inner sep=0pt, minimum size=0.5cm] (add) {$+$};
|
|
\node[below=0.5cm of add] (noise) {$\boldsymbol{z}$};
|
|
\node[box, right=1.5cm of add] (decoder) {Decoder};
|
|
\node[box, right=1.5cm of decoder] (demapper) {Demapper};
|
|
\node[right=0.5cm of demapper] (out) {$\boldsymbol{\hat{c}}$};
|
|
|
|
\node at ($(bpskmap.east)!0.5!(add.west) + (0,0.3cm)$) {$\boldsymbol{x}$};
|
|
\node at ($(add.east)!0.5!(decoder.west) + (0,0.3cm)$) {$\boldsymbol{y}$};
|
|
\node at ($(decoder.east)!0.5!(demapper.west) + (0,0.3cm)$) {$\boldsymbol{\hat{x}}$};
|
|
|
|
\draw[->] (in) -- (bpskmap);
|
|
\draw[->] (bpskmap) -- (add);
|
|
\draw[->] (add) -- (decoder);
|
|
\draw[->] (noise) -- (add);
|
|
\draw[->] (decoder) -- (demapper);
|
|
\draw[->] (demapper) -- (out);
|
|
\end{tikzpicture}
|
|
|
|
\caption{Overview of notation}
|
|
\label{fig:notation}
|
|
\end{figure}
|
|
|
|
\todo{Note about $\tilde{\boldsymbol{c}}$ (and maybe $\tilde{\boldsymbol{x}}$?)}
|
|
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
\section{Channel Coding with LDPC Codes}
|
|
\label{sec:theo:Channel Coding with LDPC Codes}
|
|
|
|
\begin{itemize}
|
|
\item Introduction
|
|
\item Binary linear codes
|
|
\item \Ac{LDPC} codes (especially $i$, $j$, parity check matrix $\boldsymbol{H}$, $N\left( j \right) $ \& $N\left( i \right) $, etc.)
|
|
\end{itemize}
|
|
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
\section{Decoding LDPC Codes using Belief Propagation}
|
|
\label{sec:theo:Decoding LDPC Codes using Belief Propagation}
|
|
|
|
\begin{itemize}
|
|
\item Introduction to message passing
|
|
\item Overview of \ac{BP} algorithm
|
|
\end{itemize}
|
|
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
\section{Optimization Methods}
|
|
\label{sec:theo:Optimization Methods}
|
|
|
|
TODO:
|
|
\begin{itemize}
|
|
\item Intro
|
|
\item Proximal Decoding
|
|
\end{itemize}
|
|
|
|
\vspace{5mm}
|
|
|
|
Generally, any linear program can be expressed in \textit{standard form}%
|
|
\footnote{The inequality $\boldsymbol{x} \ge \boldsymbol{0}$ is to be
|
|
interpreted componentwise.}
|
|
\cite[Sec. 1.1]{intro_to_lin_opt_book}:%
|
|
%
|
|
\begin{alignat}{3}
|
|
\begin{alignedat}{3}
|
|
\text{minimize }\hspace{2mm} && \boldsymbol{\gamma}^\text{T} \boldsymbol{x} \\
|
|
\text{subject to }\hspace{2mm} && \boldsymbol{A}\boldsymbol{x} & = \boldsymbol{b} \\
|
|
&& \boldsymbol{x} & \ge \boldsymbol{0}.
|
|
\end{alignedat}
|
|
\label{eq:theo:admm_standard}
|
|
\end{alignat}%
|
|
%
|
|
A technique called \textit{lagrangian relaxation} \cite[Sec. 11.4]{intro_to_lin_opt_book}
|
|
can then be applied.
|
|
First, some of the constraints are moved into the objective function itself
|
|
and the weights $\boldsymbol{\lambda}$ are introduced. A new, relaxed problem
|
|
is formulated:
|
|
%
|
|
\begin{align}
|
|
\begin{aligned}
|
|
\text{minimize }\hspace{2mm} & \boldsymbol{\gamma}^\text{T}\boldsymbol{x}
|
|
+ \boldsymbol{\lambda}^\text{T}\left(\boldsymbol{b}
|
|
- \boldsymbol{A}\boldsymbol{x} \right) \\
|
|
\text{subject to }\hspace{2mm} & \boldsymbol{x} \ge \boldsymbol{0},
|
|
\end{aligned}
|
|
\label{eq:theo:admm_relaxed}
|
|
\end{align}%
|
|
%
|
|
the new objective function being the \textit{lagrangian}%
|
|
%
|
|
\begin{align*}
|
|
\mathcal{L}\left( \boldsymbol{x}, \boldsymbol{\lambda} \right)
|
|
= \boldsymbol{\gamma}^\text{T}\boldsymbol{x}
|
|
+ \boldsymbol{\lambda}^\text{T}\left(\boldsymbol{b}
|
|
- \boldsymbol{A}\boldsymbol{x} \right)
|
|
.\end{align*}%
|
|
%
|
|
This problem is not directly equivalent to the original one, as the
|
|
solution now depends on the choice of the \textit{lagrange multipliers}
|
|
$\boldsymbol{\lambda}$.
|
|
Interestingly, however, for this particular class of problems,
|
|
the minimum of the objective function (herafter called \textit{optimal objective})
|
|
of the relaxed problem (\ref{eq:theo:admm_relaxed}) is a lower bound for
|
|
the optimal objective of the original problem (\ref{eq:theo:admm_standard})
|
|
\cite[Sec. 4.1]{intro_to_lin_opt_book}:%
|
|
%
|
|
\begin{align*}
|
|
\min_{\substack{\boldsymbol{x} \ge \boldsymbol{0} \\ \phantom{a}}}
|
|
\mathcal{L}\left( \boldsymbol{x}, \boldsymbol{\lambda}
|
|
\right)
|
|
\le
|
|
\min_{\substack{\boldsymbol{x} \ge \boldsymbol{0} \\ \boldsymbol{A}\boldsymbol{x}
|
|
= \boldsymbol{b}}}
|
|
\boldsymbol{\gamma}^\text{T}\boldsymbol{x}
|
|
.\end{align*}
|
|
%
|
|
Furthermore, for uniquely solvable linear programs \textit{strong duality}
|
|
always holds \cite[Theorem 4.4]{intro_to_lin_opt_book}.
|
|
This means that not only is it a lower bound, the tightest lower
|
|
bound actually reaches the value itself:
|
|
In other words, with the optimal choice of $\boldsymbol{\lambda}$,
|
|
the optimal objectives of the problems (\ref{eq:theo:admm_relaxed})
|
|
and (\ref{eq:theo:admm_standard}) have the same value.
|
|
%
|
|
\begin{align*}
|
|
\max_{\boldsymbol{\lambda}} \, \min_{\boldsymbol{x} \ge \boldsymbol{0}}
|
|
\mathcal{L}\left( \boldsymbol{x}, \boldsymbol{\lambda} \right)
|
|
= \min_{\substack{\boldsymbol{x} \ge \boldsymbol{0} \\ \boldsymbol{A}\boldsymbol{x}
|
|
= \boldsymbol{b}}}
|
|
\boldsymbol{\gamma}^\text{T}\boldsymbol{x}
|
|
.\end{align*}
|
|
%
|
|
Thus, we can define the \textit{dual problem} as the search for the tightest lower bound:%
|
|
%
|
|
\begin{align}
|
|
\text{maximize }\hspace{2mm} & \min_{\boldsymbol{x} \ge \boldsymbol{0}} \mathcal{L}
|
|
\left( \boldsymbol{x}, \boldsymbol{\lambda} \right)
|
|
\label{eq:theo:dual}
|
|
,\end{align}
|
|
%
|
|
and recover the solution $\boldsymbol{x}_{\text{opt}}$ to problem (\ref{eq:theo:admm_standard})
|
|
from the solution $\boldsymbol{\lambda}_\text{opt}$ to problem (\ref{eq:theo:dual})
|
|
by computing \cite[Sec. 2.1]{admm_distr_stats}%
|
|
%
|
|
\begin{align}
|
|
\boldsymbol{x}_{\text{opt}} = \argmin_{\boldsymbol{x}}
|
|
\mathcal{L}\left( \boldsymbol{x}, \boldsymbol{\lambda}_{\text{opt}} \right)
|
|
\label{eq:theo:admm_obtain_primal}
|
|
.\end{align}
|
|
%
|
|
|
|
The dual problem can then be solved iteratively using \textit{dual ascent}: starting with an
|
|
initial estimate of $\boldsymbol{\lambda}$, calculate an estimate for $\boldsymbol{x}$
|
|
using equation (\ref{eq:theo:admm_obtain_primal}); then, update $\boldsymbol{\lambda}$
|
|
using gradient descent \cite[Sec. 2.1]{admm_distr_stats}:%
|
|
%
|
|
\begin{align*}
|
|
\boldsymbol{x} &\leftarrow \argmin_{\boldsymbol{x}} \mathcal{L}\left(
|
|
\boldsymbol{x}, \boldsymbol{\lambda} \right) \\
|
|
\boldsymbol{\lambda} &\leftarrow \boldsymbol{\lambda}
|
|
+ \alpha\left( \boldsymbol{A}\boldsymbol{x} - \boldsymbol{b} \right),
|
|
\hspace{5mm} \alpha > 0
|
|
.\end{align*}
|
|
%
|
|
The algorithm can be improved by observing that when hen the objective function is separable in $\boldsymbol{x}$, the lagrangian is as well:
|
|
%
|
|
\begin{align*}
|
|
\text{minimize }\hspace{5mm} & \sum_{i=1}^{N} g_i\left( \boldsymbol{x}_i \right) \\
|
|
\text{subject to}\hspace{5mm} & \sum_{i=1}^{N} \boldsymbol{A}_i\boldsymbol{x}_i
|
|
= \boldsymbol{b}
|
|
\end{align*}
|
|
\begin{align*}
|
|
\mathcal{L}\left( \boldsymbol{x}_{[1:N]}, \boldsymbol{\lambda} \right)
|
|
= \sum_{i=1}^{N} g_i\left( \boldsymbol{x}_i \right)
|
|
+ \boldsymbol{\lambda}^\text{T} \left( \boldsymbol{b}
|
|
- \sum_{i=1}^{N} \boldsymbol{A}_i\boldsymbol{x_i} \right)
|
|
.\end{align*}%
|
|
%
|
|
The minimization of each term can then happen in parallel, in a distributed fasion
|
|
\cite[Sec. 2.2]{admm_distr_stats}.
|
|
This modified version of dual ascent is called \textit{dual decomposition}:
|
|
%
|
|
\begin{align*}
|
|
\boldsymbol{x}_i &\leftarrow \argmin_{\boldsymbol{x}_i}\mathcal{L}\left(
|
|
\boldsymbol{x}_{[1:N]}, \boldsymbol{\lambda}\right)
|
|
\hspace{5mm} \forall i \in [1:N]\\
|
|
\boldsymbol{\lambda} &\leftarrow \boldsymbol{\lambda}
|
|
+ \alpha\left( \sum_{i=1}^{N} \boldsymbol{A}_i\boldsymbol{x}_i
|
|
- \boldsymbol{b} \right),
|
|
\hspace{5mm} \alpha > 0
|
|
.\end{align*}
|
|
%
|
|
|
|
The \ac{ADMM} works the same way as dual decomposition.
|
|
It only differs in the use of an \textit{augmented lagrangian}
|
|
$\mathcal{L}_\mu\left( \boldsymbol{x}_{[1:N]} \boldsymbol{\lambda} \right)$
|
|
in order to robustify the convergence properties.
|
|
The augmented lagrangian extends the ordinary one with an additional penalty term
|
|
with the penaly parameter $\mu$:
|
|
%
|
|
\begin{align*}
|
|
\mathcal{L}_\mu \left( \boldsymbol{x}_{[1:N]}, \boldsymbol{\lambda} \right)
|
|
= \underbrace{\sum_{i=1}^{N} g_i\left( \boldsymbol{x_i} \right)
|
|
+ \boldsymbol{\lambda}^\text{T}\left( \boldsymbol{b}
|
|
- \sum_{i=1}^{N} \boldsymbol{A}_i\boldsymbol{x}_i \right)}_{\text{Ordinary lagrangian}}
|
|
+ \underbrace{\frac{\mu}{2}\lVert \sum_{i=1}^{N} \boldsymbol{A}_i\boldsymbol{x}_i
|
|
- \boldsymbol{b} \rVert_2^2}_{\text{Penalty term}},
|
|
\hspace{5mm} \mu > 0
|
|
.\end{align*}
|
|
%
|
|
The steps to solve the problem are the same as with dual decomposition, with the added
|
|
condition that the step size be $\mu$:%
|
|
%
|
|
\begin{align*}
|
|
\boldsymbol{x}_i &\leftarrow \argmin_{\boldsymbol{x}_i}\mathcal{L}_\mu\left(
|
|
\boldsymbol{x}_{[1:N]}, \boldsymbol{\lambda}\right)
|
|
\hspace{5mm} \forall i \in [1:N]\\
|
|
\boldsymbol{\lambda} &\leftarrow \boldsymbol{\lambda}
|
|
+ \mu\left( \sum_{i=1}^{N} \boldsymbol{A}_i\boldsymbol{x}_i
|
|
- \boldsymbol{b} \right),
|
|
\hspace{5mm} \mu > 0
|
|
% \boldsymbol{x}_1 &\leftarrow \argmin_{\boldsymbol{x}_1}\mathcal{L}_\mu\left(
|
|
% \boldsymbol{x}_1, \boldsymbol{x_2}, \boldsymbol{\lambda}\right) \\
|
|
% \boldsymbol{x}_2 &\leftarrow \argmin_{\boldsymbol{x}_2}\mathcal{L}_\mu\left(
|
|
% \boldsymbol{x}_1, \boldsymbol{x_2}, \boldsymbol{\lambda}\right) \\
|
|
% \boldsymbol{\lambda} &\leftarrow \boldsymbol{\lambda}
|
|
% + \mu\left( \boldsymbol{A}_1\boldsymbol{x}_1 + \boldsymbol{A}_2\boldsymbol{x}_2
|
|
% - \boldsymbol{b} \right),
|
|
% \hspace{5mm} \mu > 0
|
|
.\end{align*}
|
|
%
|