ba-thesis/latex/presentations/17_01_2023/presentation.tex

146 lines
4.5 KiB
TeX

\documentclass[10pt, aspectratio=169]{beamer}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
% \usepackage[ngerman]{babel}
%\usepackage{amsmath}
\usepackage{float}
\usepackage{tikz}
\usepackage{pgfplots}
\pgfplotsset{compat=newest}
\usepackage{subcaption}
\usepackage{listings}
\usepackage{graphicx}
\usepackage{xcolor}
\usepgfplotslibrary{colorbrewer}
\usepgfplotslibrary{external}
%\tikzexternalize[prefix=build/]
\newcommand{\templates}{../lib}
% packages to be included
\input{\templates/packages.tex}
% modifications to stick to new KIT style
\input{\templates/modifications.tex}
% marcos used throughout the slides
\input{\templates/makros_own.tex}
\title{BA Besprechung - 17.12.2022}
\author{Andreas Tsouchlos}
\institute{Karlsruhe Institute of Technology (KIT), \\ Communications Engineering Lab (CEL) }
\pgfplotsset{
discard if/.style 2 args={
x filter/.code={
\edef\tempa{\thisrow{#1}}
\edef\tempb{#2}
\ifx\tempa\tempb
\def\pgfmathresult{inf}
\fi
}
},
discard if not/.style 2 args={
x filter/.code={
\edef\tempa{\thisrow{#1}}
\edef\tempb{#2}
\ifx\tempa\tempb
\else
\def\pgfmathresult{inf}
\fi
}
}
}
\begin{document}
\begin{frame}[plain]
\maketitle
\end{frame}
\begin{frame}[t]
\frametitle{Convergance behaviour ($n=204, k=102$)}
\begin{figure}[H]
\centering
\includegraphics[width=0.6\textwidth, trim=2cm 2cm 2cm 2cm,clip]{res/extreme_components}
\caption{Components with lowest $Var\left\{ \nabla h \right\} $}
\end{figure}
\end{frame}
\begin{frame}[t]
\frametitle{Convergance behaviour ($n=204, k=102$)}
\begin{figure}[H]
\centering
\includegraphics[width=0.45\textwidth]{res/variances_correlation}
\caption{Correlation between estimate variance and correctness}
\end{figure}
\end{frame}
\begin{frame}[t]
\frametitle{Proximal vs. Hybrid Proximal ML Approach}
\begin{figure}[H]
\centering
\begin{tikzpicture}[scale=0.55]
\begin{axis}[
grid=both,
xlabel={SNR}, ylabel={BER},
ymode=log,
xtick={1, 2, ..., 8},
xmin=0, xmax=8,
ymin=1e-7, ymax=0,
]
\addplot table [col sep=comma, x=SNR, y=BER, discard if not={gamma}{0.05}] {res/2d_ber_fer_dfr_20433484_proximal.csv};
\addlegendentry{proximal}
\addplot table [col sep=comma, x=SNR, y=BER, discard if not={gamma}{0.05}] {res/2d_ber_fer_dfr_20433484_hybrid.csv};
\addlegendentry{hybrid}
\end{axis}
\end{tikzpicture}
\begin{tikzpicture}[scale=0.55]
\begin{axis}[
grid=both,
xlabel={SNR}, ylabel={FER},
ymode=log,
xtick={1, 2, ..., 8},
xmin=0, xmax=8,
ymin=1e-7, ymax=0,
]
\addplot table [col sep=comma, x=SNR, y=FER, discard if not={gamma}{0.05}] {res/2d_ber_fer_dfr_20433484_proximal.csv};
\addlegendentry{proximal}
\addplot table [col sep=comma, x=SNR, y=FER, discard if not={gamma}{0.05}] {res/2d_ber_fer_dfr_20433484_hybrid.csv};
\addlegendentry{hybrid}
\end{axis}
\end{tikzpicture}
\begin{tikzpicture}[scale=0.55]
\begin{axis}[
grid=both,
xlabel={SNR}, ylabel={DFR},
xmin=0, xmax=8,
ymode=log,
xtick={1, 2, ..., 8},
ymin=1e-7, ymax=0,
]
\addplot table [col sep=comma, x=SNR, y=DFR, discard if not={gamma}{0.05}] {res/2d_ber_fer_dfr_20433484_proximal.csv};
\addlegendentry{proximal}
\addplot table [col sep=comma, x=SNR, y=DFR, discard if not={gamma}{0.05}] {res/2d_ber_fer_dfr_20433484_hybrid.csv};
\addlegendentry{hybrid}
\end{axis}
\end{tikzpicture}
\caption{$\gamma=0.05, \omega=0.05, K=100$}
\label{fig:}
\end{figure}
\end{frame}
\end{document}