ba-thesis/sw/decoders/proximal.py

108 lines
3.5 KiB
Python

import numpy as np
class ProximalDecoder:
"""Class implementing the Proximal Decoding algorithm. See "Proximal Decoding for LDPC Codes"
by Tadashi Wadayama, and Satoshi Takabe.
"""
# TODO: Is 'R' actually called 'decoding matrix'?
def __init__(self, H: np.array, R: np.array, K: int = 100, step_size: float = 0.1,
gamma: float = 0.05, eta: float = 1.5):
"""Construct a new ProximalDecoder Object.
:param H: Parity Check Matrix
:param R: Decoding matrix
:param K: Max number of iterations to perform when decoding
:param step_size: Step size for the gradient descent process
:param gamma: Positive constant. Arises in the approximation of the prior PDF
:param eta: Positive constant slightly larger than one. See 3.2, p. 3
"""
self._H = H
self._R = R
self._K = K
self._step_size = step_size
self._gamma = gamma
self._eta = eta
self._A = []
self._B = []
for row in self._H:
A_k = np.argwhere(row == 1)
self._A.append(A_k[:, 0])
for column in self._H.T:
B_k = np.argwhere(column == 1)
self._B.append(B_k[:, 0])
@staticmethod
def _L_awgn(s: np.array, y: np.array) -> np.array:
"""Variation of the negative log-likelihood for the special case of AWGN noise.
See 4.1, p. 4.
"""
return s - y
# TODO: Is this correct?
def _grad_h(self, x: np.array) -> np.array:
"""Gradient of the code-constraint polynomial. See 2.3, p. 2."""
# Pre-computations
k, _ = self._H.shape
A_prod_matrix = np.tile(x, (k, 1))
A_prods = np.prod(A_prod_matrix, axis=1, where=self._H > 0)
# Calculate gradient
sums = np.dot(A_prods**2 - A_prods, self._H)
result = 4 * (x**2 - 1) * x + (2 / x) * sums
return result
# TODO: Is the 'projection onto [-eta, eta]' actually just clipping?
def _projection(self, x):
"""Project a vector onto [-eta, eta]^n in order to avoid numerical instability.
Detailed in 3.2, p. 3 (Equation (15)).
:param x:
:return: x clipped to [-eta, eta]^n
"""
return np.clip(x, -self._eta, self._eta)
def _check_parity(self, y_hat: np.array) -> bool:
"""Perform a parity check for a given codeword.
:param y_hat: codeword to be checked (element of [0, 1]^n)
:return: True if the parity check passes, i.e. the codeword is valid. False otherwise
"""
syndrome = np.dot(self._H, y_hat) % 2
return not np.any(syndrome)
def decode(self, y: np.array) -> np.array:
"""Decode a received signal. The algorithm is detailed in 3.2, p.3.
This function assumes a BPSK-like modulated signal ([-1, 1]^n instead of [0, 1]^n)
and an AWGN channel.
:param y: Vector of received values. (y = x + w, where 'x' is element of [-1, 1]^n
and 'w' is noise)
:return: Most probably sent dataword (element of [0, 1]^k)
"""
s = np.zeros(y.size)
x_hat = np.zeros(y.size)
for k in range(self._K):
r = s - self._step_size * self._L_awgn(s, y)
s = r - self._gamma * self._grad_h(r)
s = self._projection(s) # Equation (15)
x_hat = np.sign(s)
x_hat = (x_hat == 1) * 1 # Map the codeword from [-1, 1]^n to [0, 1]^n
if self._check_parity(x_hat):
break
return np.dot(self._R, x_hat)