ba-thesis/latex/thesis/chapters/lp_dec_using_admm.tex

725 lines
30 KiB
TeX

\chapter{\acs{LP} Decoding using \acs{ADMM}}%
\label{chapter:lp_dec_using_admm}
TODO
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{LP Decoding}%
\label{sec:lp:LP Decoding}
\Ac{LP} decoding is a subject area introduced by Feldman et al.
\cite{feldman_paper}. They reframe the decoding problem as an
\textit{integer linear program} and subsequently present two relaxations into
\textit{linear programs}, one representing a formulation of exact \ac{LP}
decoding and one, which is an approximation with a more manageable
representation.
To solve the resulting linear program, various optimization methods can be
used (see for example \cite{alp}, \cite{interior_point},
\cite{efficient_lp_dec_admm}, \cite{pdd}).
Feldman et al. begin by looking at the \ac{ML} decoding problem%
\footnote{They assume that all codewords are equally likely to be transmitted,
making the \ac{ML} and \ac{MAP} decoding problems equivalent.}%
%
\begin{align}
\hat{\boldsymbol{c}}_{\text{\ac{ML}}} = \argmax_{\boldsymbol{c} \in \mathcal{C}}
f_{\boldsymbol{Y} \mid \boldsymbol{C}}
\left( \boldsymbol{y} \mid \boldsymbol{c} \right)%
\label{eq:lp:ml}
.\end{align}%
%
Assuming a memoryless channel, equation (\ref{eq:lp:ml}) can be rewritten in terms
of the \acp{LLR} $\gamma_i$ \cite[Sec. 2.5]{feldman_thesis}:%
%
\begin{align*}
\hat{\boldsymbol{c}}_{\text{\ac{ML}}} = \argmin_{\boldsymbol{c}\in\mathcal{C}}
\sum_{i=1}^{n} \gamma_i c_i,%
\hspace{5mm} \gamma_i = \ln\left(
\frac{f_{Y_i | C_i} \left( y_i \mid c_i = 0 \right) }
{f_{Y_i | C_i} \left( y_i \mid c_i = 1 \right) } \right)
.\end{align*}
%
The authors propose using the following cost function%
\footnote{In this context, \textit{cost function} and \textit{objective function}
have the same meaning.}
for the \ac{LP} decoding problem:%
%
\begin{align*}
g\left( \boldsymbol{c} \right) = \sum_{i=1}^{n} \gamma_i c_i
= \boldsymbol{\gamma}^\text{T}\boldsymbol{c}
.\end{align*}
%
With this cost function, the exact integer linear program formulation of \ac{ML}
decoding becomes%
%
\begin{align*}
\text{minimize }\hspace{2mm} & \boldsymbol{\gamma}^\text{T}\boldsymbol{c} \\
\text{subject to }\hspace{2mm} &\boldsymbol{c} \in \mathcal{C}
.\end{align*}%
%
%\todo{$\boldsymbol{c}$ or some other variable name? e.g. $\boldsymbol{c}^{*}$.
%Especially for the continuous variable in LP decoding}
As solving integer linear programs is generally NP-hard, this decoding problem
has to be approximated by a problem with looser constraints.
A technique called \textit{relaxation} is applied:
relaxing the constraints, thereby broadening the considered domain
(e.g., by lifting the integer requirement).
First, the authors present an equivalent \ac{LP} formulation of exact \ac{ML}
decoding, redefining the constraints in terms of the \text{codeword polytope}
%
\begin{align*}
\text{poly}\left( \mathcal{C} \right) = \left\{
\sum_{\boldsymbol{c} \in \mathcal{C}} \alpha_{\boldsymbol{c}} \boldsymbol{c}
\text{ : } \alpha_{\boldsymbol{c}} \ge 0,
\sum_{\boldsymbol{c} \in \mathcal{C}} \alpha_{\boldsymbol{c}} = 1 \right\}
,\end{align*} %
%
which represents the \textit{convex hull} of all possible codewords,
i.e., the convex set of linear combinations of all codewords.
This corresponds to simply lifting the integer requirement.
However, since the number of constraints needed to characterize the codeword
polytope is exponential in the code length, this formulation is relaxed further.
By observing that each check node defines its own local single parity-check
code, and, thus, its own \textit{local codeword polytope},
the \textit{relaxed codeword polytope} $\overline{Q}$ is defined as the intersection of all
local codeword polytopes.
This consideration leads to constraints that can be described as follows
\cite[Sec. II, A]{efficient_lp_dec_admm}:%
%
\begin{align*}
\boldsymbol{T}_j \tilde{\boldsymbol{c}} \in \mathcal{P}_{d_j}
\hspace{5mm}\forall j\in \mathcal{J}
,\end{align*}%
%
where $\mathcal{P}_{d_j}$ is the \textit{check polytope}, i.e., the convex hull of all
binary vectors of length $d_j$ with even parity%
\footnote{Essentially $\mathcal{P}_{d_j}$ is the set of vectors that satisfy
parity-check $j$, but extended to the continuous domain.},
and $\boldsymbol{T}_j$ is the \textit{transfer matrix}, which selects the
neighboring variable nodes
of check node $j$ (i.e., the relevant components of $\tilde{\boldsymbol{c}}$
for parity-check $j$).
For example, if the $j$th row of the parity-check matrix
$\boldsymbol{H}$ was $\boldsymbol{h}_j =
\begin{bmatrix} 0 & 1 & 0 & 1 & 0 & 1 & 0 \end{bmatrix}$,
the transfer matrix would be \cite[Sec. II, A]{efficient_lp_dec_admm}
%
\begin{align*}
\boldsymbol{T}_j =
\begin{bmatrix}
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
\end{bmatrix}
.\end{align*}%
%
In figure \ref{fig:lp:poly}, the two relaxations are compared for an
examplary code, which is described by the generator and parity-check matrices%
%
\begin{align}
\boldsymbol{G} =
\begin{bmatrix}
0 & 1 & 1
\end{bmatrix} \label{eq:lp:example_code_def_gen} \\[1em]
\boldsymbol{H} =
\begin{bmatrix}
1 & 1 & 1\\
0 & 1 & 1
\end{bmatrix} \label{eq:lp:example_code_def_par}
\end{align}%
%
and has only two possible codewords:
%
\begin{align*}
\mathcal{C} = \left\{ \begin{bmatrix} 0 & 0 & 0 \end{bmatrix},
\begin{bmatrix} 0 & 1 & 1 \end{bmatrix} \right\}
.\end{align*}
%
Figure \ref{fig:lp:poly:exact_ilp} shows the domain of exact \ac{ML} decoding.
The first relaxation onto the codeword polytope $\text{poly}\left( \mathcal{C} \right) $
is shown in figure \ref{fig:lp:poly:exact};
this expresses the constraints for the equivalent linear program to exact \ac{ML} decoding.
$\text{poly}\left( \mathcal{C} \right) $ is further relaxed onto the relaxed codeword polytope
$\overline{Q}$, shown in figure \ref{fig:lp:poly:relaxed}.
Figure \ref{fig:lp:poly:local} shows how $\overline{Q}$ is formed by intersecting the
local codeword polytopes of each check node.
%
%
%
% Codeword polytope visualization figure
%
%
\begin{figure}[H]
\centering
%
% Left side - codeword polytope
%
\begin{subfigure}[b]{0.35\textwidth}
\centering
\begin{subfigure}{\textwidth}
\centering
\tikzstyle{codeword} = [color=KITblue, fill=KITblue,
draw, circle, inner sep=0pt, minimum size=4pt]
\tdplotsetmaincoords{60}{25}
\begin{tikzpicture}[scale=0.9, tdplot_main_coords]
% Cube
\coordinate (p000) at (0, 0, 0);
\coordinate (p001) at (0, 0, 2);
\coordinate (p010) at (0, 2, 0);
\coordinate (p011) at (0, 2, 2);
\coordinate (p100) at (2, 0, 0);
\coordinate (p101) at (2, 0, 2);
\coordinate (p110) at (2, 2, 0);
\coordinate (p111) at (2, 2, 2);
\draw[] (p000) -- (p100);
\draw[] (p100) -- (p101);
\draw[] (p101) -- (p001);
\draw[] (p001) -- (p000);
\draw[dashed] (p010) -- (p110);
\draw[] (p110) -- (p111);
\draw[] (p111) -- (p011);
\draw[dashed] (p011) -- (p010);
\draw[dashed] (p000) -- (p010);
\draw[] (p100) -- (p110);
\draw[] (p101) -- (p111);
\draw[] (p001) -- (p011);
% Polytope Vertices
\node[codeword] (c000) at (p000) {};
\node[codeword] (c011) at (p011) {};
% Polytope Annotations
\node[color=KITblue, below=0cm of c000] {$\left( 0, 0, 0 \right) $};
\node[color=KITblue, above=0cm of c011] {$\left( 0, 1, 1 \right) $};
\end{tikzpicture}
\caption{Set of all codewords $\mathcal{C}$}
\label{fig:lp:poly:exact_ilp}
\end{subfigure}\\[1em]
\begin{subfigure}{\textwidth}
\centering
\begin{tikzpicture}
\node (relaxation) at (0, 0) {Relaxation};
\draw (0, 0.61) -- (relaxation);
\draw[->] (relaxation) -- (0, -0.7);
\end{tikzpicture}
\vspace{4mm}
\tikzstyle{codeword} = [color=KITblue, fill=KITblue,
draw, circle, inner sep=0pt, minimum size=4pt]
\tdplotsetmaincoords{60}{25}
\begin{tikzpicture}[scale=0.9, tdplot_main_coords]
% Cube
\coordinate (p000) at (0, 0, 0);
\coordinate (p001) at (0, 0, 2);
\coordinate (p010) at (0, 2, 0);
\coordinate (p011) at (0, 2, 2);
\coordinate (p100) at (2, 0, 0);
\coordinate (p101) at (2, 0, 2);
\coordinate (p110) at (2, 2, 0);
\coordinate (p111) at (2, 2, 2);
\draw[] (p000) -- (p100);
\draw[] (p100) -- (p101);
\draw[] (p101) -- (p001);
\draw[] (p001) -- (p000);
\draw[dashed] (p010) -- (p110);
\draw[] (p110) -- (p111);
\draw[] (p111) -- (p011);
\draw[dashed] (p011) -- (p010);
\draw[dashed] (p000) -- (p010);
\draw[] (p100) -- (p110);
\draw[] (p101) -- (p111);
\draw[] (p001) -- (p011);
% Polytope Vertices
\node[codeword] (c000) at (p000) {};
\node[codeword] (c011) at (p011) {};
% Polytope Edges
\draw[line width=1pt, color=KITblue] (c000) -- (c011);
% Polytope Annotations
\node[color=KITblue, below=0cm of c000] {$\left( 0, 0, 0 \right) $};
\node[color=KITblue, above=0cm of c011] {$\left( 0, 1, 1 \right) $};
\end{tikzpicture}
\caption{Codeword polytope $\text{poly}\left( \mathcal{C} \right) $}
\label{fig:lp:poly:exact}
\end{subfigure}
\end{subfigure} \hfill%
%
%
% Right side - relaxed polytope
%
%
\begin{subfigure}[b]{0.55\textwidth}
\centering
\begin{subfigure}{\textwidth}
\centering
\begin{minipage}{0.5\textwidth}
\centering
\tikzstyle{codeword} = [color=KITblue, fill=KITblue,
draw, circle, inner sep=0pt, minimum size=4pt]
\tdplotsetmaincoords{60}{25}
\begin{tikzpicture}[scale=0.9, tdplot_main_coords]
% Cube
\coordinate (p000) at (0, 0, 0);
\coordinate (p001) at (0, 0, 2);
\coordinate (p010) at (0, 2, 0);
\coordinate (p011) at (0, 2, 2);
\coordinate (p100) at (2, 0, 0);
\coordinate (p101) at (2, 0, 2);
\coordinate (p110) at (2, 2, 0);
\coordinate (p111) at (2, 2, 2);
\draw[] (p000) -- (p100);
\draw[] (p100) -- (p101);
\draw[] (p101) -- (p001);
\draw[] (p001) -- (p000);
\draw[dashed] (p010) -- (p110);
\draw[] (p110) -- (p111);
\draw[] (p111) -- (p011);
\draw[dashed] (p011) -- (p010);
\draw[dashed] (p000) -- (p010);
\draw[] (p100) -- (p110);
\draw[] (p101) -- (p111);
\draw[] (p001) -- (p011);
% Polytope Vertices
\node[codeword] (c000) at (p000) {};
\node[codeword] (c101) at (p101) {};
\node[codeword] (c110) at (p110) {};
\node[codeword] (c011) at (p011) {};
% Polytope Edges & Faces
\draw[line width=1pt, color=KITblue] (c000) -- (c101);
\draw[line width=1pt, color=KITblue] (c000) -- (c110);
\draw[line width=1pt, color=KITblue] (c000) -- (c011);
\draw[line width=1pt, color=KITblue] (c101) -- (c110);
\draw[line width=1pt, color=KITblue] (c101) -- (c011);
\draw[line width=1pt, color=KITblue] (c011) -- (c110);
\fill[KITblue, opacity=0.15] (p000) -- (p101) -- (p011) -- cycle;
\fill[KITblue, opacity=0.15] (p000) -- (p110) -- (p101) -- cycle;
\fill[KITblue, opacity=0.15] (p110) -- (p011) -- (p101) -- cycle;
% Polytope Annotations
\node[color=KITblue, below=0cm of c000] {$\left( 0, 0, 0 \right) $};
\node[color=KITblue, right=0.07cm of c101] {$\left( 1, 0, 1 \right) $};
\node[color=KITblue, right=0cm of c110] {$\left( 1, 1, 0 \right) $};
\node[color=KITblue, above=0cm of c011] {$\left( 0, 1, 1 \right) $};
\end{tikzpicture}
\end{minipage}%
\begin{minipage}{0.5\textwidth}
\centering
\tikzstyle{codeword} = [color=KITblue, fill=KITblue,
draw, circle, inner sep=0pt, minimum size=4pt]
\tdplotsetmaincoords{60}{25}
\begin{tikzpicture}[scale=0.9, tdplot_main_coords]
% Cube
\coordinate (p000) at (0, 0, 0);
\coordinate (p001) at (0, 0, 2);
\coordinate (p010) at (0, 2, 0);
\coordinate (p011) at (0, 2, 2);
\coordinate (p100) at (2, 0, 0);
\coordinate (p101) at (2, 0, 2);
\coordinate (p110) at (2, 2, 0);
\coordinate (p111) at (2, 2, 2);
\draw[] (p000) -- (p100);
\draw[] (p100) -- (p101);
\draw[] (p101) -- (p001);
\draw[] (p001) -- (p000);
\draw[dashed] (p010) -- (p110);
\draw[] (p110) -- (p111);
\draw[] (p111) -- (p011);
\draw[dashed] (p011) -- (p010);
\draw[dashed] (p000) -- (p010);
\draw[] (p100) -- (p110);
\draw[] (p101) -- (p111);
\draw[] (p001) -- (p011);
% Polytope Vertices
\node[codeword] (c000) at (p000) {};
\node[codeword] (c011) at (p011) {};
\node[codeword] (c100) at (p100) {};
\node[codeword] (c111) at (p111) {};
% Polytope Edges & Faces
\draw[line width=1pt, color=KITblue] (c000) -- (c011);
\draw[line width=1pt, color=KITblue] (c000) -- (c100);
\draw[line width=1pt, color=KITblue] (c100) -- (c111);
\draw[line width=1pt, color=KITblue] (c111) -- (c011);
\fill[KITblue, opacity=0.2] (p000) -- (p100) -- (p111) -- (p011) -- cycle;
% Polytope Annotations
\node[color=KITblue, below=0cm of c000] {$\left( 0, 0, 0 \right) $};
\node[color=KITblue, above=0cm of c011] {$\left( 0, 1, 1 \right) $};
\node[color=KITblue, below=0cm of c100] {$\left( 1, 0, 0 \right) $};
\node[color=KITblue, above=0cm of c111] {$\left( 1, 1, 1 \right) $};
\end{tikzpicture}
\end{minipage}
\begin{tikzpicture}
\node[color=KITblue, align=center] at (-2,0)
{$j=1$\\ $\left( c_1 + c_2+ c_3 = 0 \right) $};
\node[color=KITblue, align=center] at (2,0)
{$j=2$\\ $\left(c_2 + c_3 = 0\right)$};
\end{tikzpicture}
\caption{Local codeword polytopes of the check nodes}
\label{fig:lp:poly:local}
\end{subfigure}\\[1em]
\begin{subfigure}{\textwidth}
\centering
\begin{tikzpicture}
\draw[densely dashed] (-2, 0) -- (2, 0);
\draw[densely dashed] (-2, 0.5) -- (-2, 0);
\draw[densely dashed] (2, 0.5) -- (2, 0);
\node (intersection) at (0, -0.5) {Intersection};
\draw[densely dashed] (0, 0) -- (intersection);
\draw[densely dashed, ->] (intersection) -- (0, -1);
\end{tikzpicture}
\vspace{2mm}
\tikzstyle{codeword} = [color=KITblue, fill=KITblue,
draw, circle, inner sep=0pt, minimum size=4pt]
\tikzstyle{pseudocodeword} = [color=KITred, fill=KITred,
draw, circle, inner sep=0pt, minimum size=4pt]
\tdplotsetmaincoords{60}{25}
\begin{tikzpicture}[scale=0.9, tdplot_main_coords]
% Cube
\coordinate (p000) at (0, 0, 0);
\coordinate (p001) at (0, 0, 2);
\coordinate (p010) at (0, 2, 0);
\coordinate (p011) at (0, 2, 2);
\coordinate (p100) at (2, 0, 0);
\coordinate (p101) at (2, 0, 2);
\coordinate (p110) at (2, 2, 0);
\coordinate (p111) at (2, 2, 2);
\draw[] (p000) -- (p100);
\draw[] (p100) -- (p101);
\draw[] (p101) -- (p001);
\draw[] (p001) -- (p000);
\draw[dashed] (p010) -- (p110);
\draw[] (p110) -- (p111);
\draw[] (p111) -- (p011);
\draw[dashed] (p011) -- (p010);
\draw[dashed] (p000) -- (p010);
\draw[] (p100) -- (p110);
\draw[] (p101) -- (p111);
\draw[] (p001) -- (p011);
% Polytope Vertices
\node[codeword] (c000) at (p000) {};
\node[codeword] (c011) at (p011) {};
\node[pseudocodeword] (cpseudo) at (2, 1, 1) {};
% Polytope Edges & Faces
\draw[line width=1pt, color=KITblue] (c000) -- (c011);
\draw[line width=1pt, color=KITred] (cpseudo) -- (c000);
\draw[line width=1pt, color=KITred] (cpseudo) -- (c011);
\fill[KITred, opacity=0.2] (p000) -- (p011) -- (2,1,1) -- cycle;
% Polytope Annotations
\node[color=KITblue, below=0cm of c000] {$\left( 0, 0, 0 \right) $};
\node[color=KITblue, above=0cm of c011] {$\left( 0, 1, 1 \right) $};
\node[color=KITred, right=0cm of cpseudo]
{$\left( 1, \frac{1}{2}, \frac{1}{2} \right) $};
\end{tikzpicture}
\caption{Relaxed codeword polytope $\overline{Q}$}
\label{fig:lp:poly:relaxed}
\end{subfigure}
\end{subfigure}
\vspace*{-2.5cm}
\hspace*{-0.1\textwidth}
\begin{tikzpicture}
\draw[->] (0,0) -- (2.5, 0);
\node[above] at (1.25, 0) {Relaxation};
% Dummy node to make tikzpicture slightly larger
\node[below] at (1.25, 0) {};
\end{tikzpicture}
\vspace{2.5cm}
\caption{Visualization of the codeword polytope and the relaxed codeword
polytope of the code described by equations (\ref{eq:lp:example_code_def_gen})
and (\ref{eq:lp:example_code_def_par})}
\label{fig:lp:poly}
\end{figure}%
%
\noindent It can be seen that the relaxed codeword polytope $\overline{Q}$ introduces
vertices with fractional values;
these represent erroneous non-codeword solutions to the linear program and
correspond to the so-called \textit{pseudo-codewords} introduced in
\cite{feldman_paper}.
However, since for \ac{LDPC} codes $\overline{Q}$ scales linearly with $n$ instead of
exponentially, it is a lot more tractable for practical applications.
The resulting formulation of the relaxed optimization problem becomes%
%
\begin{align}
\begin{aligned}
\text{minimize }\hspace{2mm} & \boldsymbol{\gamma}^\text{T}\tilde{\boldsymbol{c}} \\
\text{subject to }\hspace{2mm} &\boldsymbol{T}_j \tilde{\boldsymbol{c}} \in \mathcal{P}_{d_j}
\hspace{5mm}\forall j\in\mathcal{J}.
\end{aligned} \label{eq:lp:relaxed_formulation}
\end{align}%
\todo{Mention ML certificate property}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Decoding Algorithm}%
\label{sec:lp:Decoding Algorithm}
The \ac{LP} decoding formulation in section \ref{sec:lp:LP Decoding}
is a very general one that can be solved with a number of different optimization methods.
In this work \ac{ADMM} is examined, as its distributed nature allows for a very efficient
implementation.
\ac{LP} decoding using \ac{ADMM} can be regarded as a message
passing algorithm with separate variable- and check-node update steps;
the resulting algorithm has a striking similarity to \ac{BP} and its computational
complexity has been demonstrated to compare favorably to \ac{BP} \cite{original_admm},
\cite{efficient_lp_dec_admm}.
The \ac{LP} decoding problem in (\ref{eq:lp:relaxed_formulation}) can be
slightly rewritten using the auxiliary variables
$\boldsymbol{z}_{[1:m]}$:%
%
\begin{align}
\begin{aligned}
\begin{array}{r}
\text{minimize }
\end{array}\hspace{0.5mm} & \boldsymbol{\gamma}^\text{T}\tilde{\boldsymbol{c}} \\
\begin{array}{r}
\text{subject to }\\
\phantom{te}
\end{array}\hspace{0.5mm} & \setlength{\arraycolsep}{1.4pt}
\begin{array}{rl}
\boldsymbol{T}_j\tilde{\boldsymbol{c}}
&= \boldsymbol{z}_j\\
\boldsymbol{z}_j
&\in \mathcal{P}_{d_j}
\end{array}
\hspace{5mm} \forall j\in\mathcal{J}.
\end{aligned}
\label{eq:lp:admm_reformulated}
\end{align}
%
In this form, the problem almost fits the \ac{ADMM} template described in section
\ref{sec:theo:Optimization Methods}, except for the fact that there are multiple equality
constraints $\boldsymbol{T}_j \tilde{\boldsymbol{c}} = \boldsymbol{z}_j$ and the
additional constraints $\boldsymbol{z}_j \in \mathcal{P}_{d_j} \, \forall\, j\in\mathcal{J}$.
The multiple constraints can be addressed by introducing additional terms in the
augmented lagrangian:%
%
\begin{align*}
\mathcal{L}_{\mu}\left( \tilde{\boldsymbol{c}}, \boldsymbol{z}_{[1:m]},
\boldsymbol{\lambda}_{[1:m]} \right)
= \boldsymbol{\gamma}^\text{T}\tilde{\boldsymbol{c}}
+ \sum_{j\in\mathcal{J}} \boldsymbol{\lambda}^\text{T}_j
\left( \boldsymbol{T}_j\tilde{\boldsymbol{c}} - \boldsymbol{z}_j \right)
+ \frac{\mu}{2}\sum_{j\in\mathcal{J}}
\lVert \boldsymbol{T}_j\tilde{\boldsymbol{c}} - \boldsymbol{z}_j \rVert^2_2
.\end{align*}%
%
The additional constraints remain in the dual optimization problem:%
%
\begin{align*}
\text{maximize } \min_{\substack{\tilde{\boldsymbol{c}} \\
\boldsymbol{z}_j \in \mathcal{P}_{d_j}\,\forall\,j\in\mathcal{J}}}
\mathcal{L}_{\mu}\left( \tilde{\boldsymbol{c}}, \boldsymbol{z}_{[1:m]},
\boldsymbol{\lambda}_{[1:m]} \right)
.\end{align*}%
%
The steps to solve the dual problem then become:
%
\begin{alignat*}{3}
\tilde{\boldsymbol{c}} &\leftarrow \argmin_{\tilde{\boldsymbol{c}}} \mathcal{L}_{\mu} \left(
\tilde{\boldsymbol{c}}, \boldsymbol{z}_{[1:m]}, \boldsymbol{\lambda}_{[1:m]} \right) \\
\boldsymbol{z}_j &\leftarrow \argmin_{\boldsymbol{z}_j \in \mathcal{P}_{d_j}}
\mathcal{L}_{\mu} \left(
\tilde{\boldsymbol{c}}, \boldsymbol{z}_{[1:m]}, \boldsymbol{\lambda}_{[1:m]} \right)
\hspace{3mm} &&\forall j\in\mathcal{J} \\
\boldsymbol{\lambda}_j &\leftarrow \boldsymbol{\lambda}_j
+ \mu\left( \boldsymbol{T}_j\tilde{\boldsymbol{c}}
- \boldsymbol{z}_j \right)
\hspace{3mm} &&\forall j\in\mathcal{J}
.\end{alignat*}
%
Luckily, the additional constraints only affect the $\boldsymbol{z}_j$-update steps.
Furthermore, the $\boldsymbol{z}_j$-update steps can be shown to be equivalent to projections
onto the check polytopes $\mathcal{P}_{d_j}$
and the $\tilde{\boldsymbol{c}}$-update can be computed analytically%
%
\footnote{In the $\tilde{c}_i$-update rule, the term
$\left( \boldsymbol{z}_j \right)_i$ is a slight abuse of notation, as
$\boldsymbol{z}_j$ has less components than there are variable-nodes $i$.
What is actually meant is the component of $\boldsymbol{z}_j$ that is associated
with the variable node $i$, i.e., $\left( \boldsymbol{T}_j^\text{T}\boldsymbol{z}_j\right)_i$.
The same is true for $\left( \boldsymbol{\lambda}_j \right)_i$.}
%
\cite[Sec. III. B.]{original_admm}:%
%
\begin{alignat*}{3}
\tilde{c}_i &\leftarrow \frac{1}{\left| N_v\left( i \right) \right|} \left(
\sum_{j\in N_v\left( i \right) } \Big( \left( \boldsymbol{z}_j \right)_i
- \frac{1}{\mu} \left( \boldsymbol{\lambda}_j \right)_i \Big)
- \frac{\gamma_i}{\mu} \right)
\hspace{3mm} && \forall i\in\mathcal{I} \\
\boldsymbol{z}_j &\leftarrow \Pi_{\mathcal{P}_{d_j}}\left(
\boldsymbol{T}_j\tilde{\boldsymbol{c}} + \frac{\boldsymbol{\lambda}_j}{\mu} \right)
\hspace{3mm} && \forall j\in\mathcal{J} \\
\boldsymbol{\lambda}_j &\leftarrow \boldsymbol{\lambda}_j
+ \mu\left( \boldsymbol{T}_j\tilde{\boldsymbol{c}}
- \boldsymbol{z}_j \right)
\hspace{3mm} && \forall j\in\mathcal{J}
.\end{alignat*}
%
It should be noted that all of the $\boldsymbol{z}_j$-updates can be computed simultaneously,
as they are independent of one another.
The same is true for the updates of the individual components of $\tilde{\boldsymbol{c}}$.
This representation can be slightly simplified by substituting
$\boldsymbol{\lambda}_j = \mu \cdot \boldsymbol{u}_j \,\forall\,j\in\mathcal{J}$:%
%
\begin{alignat*}{3}
\tilde{c}_i &\leftarrow \frac{1}{\left| N_v\left( i \right) \right|} \left(
\sum_{j\in N_v\left( i \right) } \Big( \left( \boldsymbol{z}_j \right)_i
- \left( \boldsymbol{u}_j \right)_i \Big)
- \frac{\gamma_i}{\mu} \right)
\hspace{3mm} && \forall i\in\mathcal{I} \\
\boldsymbol{z}_j &\leftarrow \Pi_{\mathcal{P}_{d_j}}\left(
\boldsymbol{T}_j\tilde{\boldsymbol{c}} + \boldsymbol{u}_j \right)
\hspace{3mm} && \forall j\in\mathcal{J} \\
\boldsymbol{u}_j &\leftarrow \boldsymbol{u}_j
+ \boldsymbol{T}_j\tilde{\boldsymbol{c}}
- \boldsymbol{z}_j
\hspace{3mm} && \forall j\in\mathcal{J}
.\end{alignat*}
%
The reason \ac{ADMM} is able to perform so well is due to the relocation of the constraints
$\boldsymbol{T}_j\tilde{\boldsymbol{c}}_j\in\mathcal{P}_{d_j}\,\forall\, j\in\mathcal{J}$
into the objective function itself.
The minimization of the new objective function can then take place simultaneously
with respect to all $\boldsymbol{z}_j, j\in\mathcal{J}$.
Effectively, all of the $\left|\mathcal{J}\right|$ parity constraints can be
handled at the same time.
This can also be understood by interpreting the decoding process as a message-passing
algorithm \cite[Sec. III. D.]{original_admm}, \cite[Sec. II. B.]{efficient_lp_dec_admm},
depicted in algorithm \ref{alg:admm}.
\begin{genericAlgorithm}[caption={\ac{LP} decoding using \ac{ADMM} interpreted
as a message passing algorithm\protect\footnotemark{}}, label={alg:admm},
basicstyle=\fontsize{11}{16}\selectfont
]
Initialize $\tilde{\boldsymbol{c}}, \boldsymbol{z}_{[1:m]}$ and $\boldsymbol{u}_{[1:m]}$
while $\sum_{j\in\mathcal{J}} \lVert \boldsymbol{T}_j\tilde{\boldsymbol{c}} - \boldsymbol{z}_j \rVert_2 \ge \epsilon_{\text{pri}}$ or $\sum_{j\in\mathcal{J}} \lVert \boldsymbol{z}^\prime_j - \boldsymbol{z}_j \rVert_2 \ge \epsilon_{\text{dual}}$ do
for $j$ in $\mathcal{J}$ do
$\boldsymbol{z}_j \leftarrow \Pi_{\mathcal{P}_{d_j}}\left(
\boldsymbol{T}_j\tilde{\boldsymbol{c}} + \boldsymbol{u}_j \right)$
$\boldsymbol{u}_j \leftarrow \boldsymbol{u}_j
+ \boldsymbol{T}_j\tilde{\boldsymbol{c}}
- \boldsymbol{z}_j$
end for
for $i$ in $\mathcal{I}$ do
$\tilde{c}_i \leftarrow \frac{1}{\left| N_v\left( i \right) \right|} \left(
\sum_{j\in N_v\left( i \right) } \Big(
\left( \boldsymbol{z}_j \right)_i - \left( \boldsymbol{u}_j
\right)_i
\Big) - \frac{\gamma_i}{\mu} \right)$
end for
end while
\end{genericAlgorithm}
%
\footnotetext{$\epsilon_{\text{pri}} > 0$ and $\epsilon_{\text{dual}} > 0$
are additional parameters
defining the tolerances for the stopping criteria of the algorithm.
The variable $\boldsymbol{z}_j^\prime$ denotes the value of
$\boldsymbol{z}_j$ in the previous iteration.}%
%
\noindent The $\boldsymbol{z}_j$- and $\boldsymbol{\lambda}_j$-updates can be understood as
a check-node update step (lines $3$-$6$) and the $\tilde{c}_i$-updates can be understood as
a variable-node update step (lines $7$-$9$ in figure \ref{alg:admm}).
The updates for each variable- and check-node can be perfomed in parallel.
The main computational effort in solving the linear program then amounts to
computing the projection operation $\Pi_{\mathcal{P}_{d_j}} \left( \cdot \right) $
onto each check polytope. Various different methods to perform this projection
have been proposed (e.g., in \cite{original_admm}, \cite{efficient_lp_dec_admm},
\cite{lautern}).
The method chosen here is the one presented in \cite{lautern}.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Implementation Details}%
\label{sec:lp:Implementation Details}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Results}%
\label{sec:lp:Results}