ba-thesis/sw/simulate_2d_BER.py

149 lines
4.0 KiB
Python

import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import signal
from timeit import default_timer
from functools import partial
from utility import codes, noise, misc
from utility.simulation.simulators import GenericMultithreadedSimulator
from utility.simulation import SimulationManager
from cpp_modules.cpp_decoders import ProximalDecoder_204_102 as ProximalDecoder
def task_func(params):
"""Function called by the GenericMultithreadedSimulator instance.
Calculate the BER, FER, and DFR for a given SNR and gamma.
"""
signal.signal(signal.SIGINT, signal.SIG_IGN)
decoder = params["decoder"]
max_iterations = params["max_iterations"]
SNR = params["SNR"]
n = params["n"]
k = params["k"]
c = np.zeros(n)
x_bpsk = c + 1
total_bit_errors = 0
total_frame_errors = 0
dec_fails = 0
num_iterations = 0
for i in range(max_iterations):
x = noise.add_awgn(x_bpsk, SNR, n, k)
x_hat, k_max = decoder.decode(x)
bit_errors = misc.count_bit_errors(x_hat, c)
if bit_errors > 0:
total_bit_errors += bit_errors
total_frame_errors += 1
num_iterations += 1
if k_max == -1:
dec_fails += 1
if total_frame_errors > 100:
break
BER = total_bit_errors / (num_iterations * n)
FER = total_frame_errors / num_iterations
DFR = dec_fails / (num_iterations + dec_fails)
return {"BER": BER, "FER": FER, "DFR": DFR,
"num_iterations": num_iterations}
def get_params(code_name: str):
"""In this function all parameters for the simulation are defined."""
# Define global simulation parameters
H_file = f"res/{code_name}.alist"
H = codes.read_alist_file(H_file)
n_min_k, n = H.shape
k = n - n_min_k
omega = 0.05
K = 100
gammas = np.arange(0.0, 0.17, 0.01)
SNRs = np.arange(1, 6, 0.5)
max_iterations = 20000
# Define parameters different for each task
task_params = []
for i, SNR in enumerate(SNRs):
for j, gamma in enumerate(gammas):
decoder = ProximalDecoder(H=H.astype('int32'), K=K, omega=omega,
gamma=gamma)
task_params.append(
{"decoder": decoder, "max_iterations": max_iterations,
"SNR": SNR, "gamma": gamma, "n": n, "k": k})
return omega, K, task_params
def configure_new_simulation(sim_mgr: SimulationManager, code_name: str,
sim_name: str) -> None:
sim = GenericMultithreadedSimulator()
omega, K, task_params = get_params(code_name)
sim.task_params = task_params
sim.task_func = task_func
sim.format_func = partial(misc.pgf_reformat_data_3d, x_param_name="SNR",
y_param_name="gamma",
z_param_names=["BER", "FER", "DFR",
"num_iterations"])
sim_mgr.configure_simulation(simulator=sim, name=sim_name,
additional_metadata={"omega": omega, "K": K})
def main():
# code_name = "BCH_7_4"
# code_name = "BCH_31_11"
# code_name = "BCH_31_26"
# code_name = "96.3.965"
# code_name = "204.33.486"
code_name = "204.33.484"
# code_name = "204.55.187"
# code_name = "408.33.844"
sim_name = f"2d_BER_FER_DFR_{misc.slugify(code_name)}"
# Run simulation
sim_mgr = SimulationManager(saves_dir="sim_saves",
results_dir="sim_results")
unfinished_sims = sim_mgr.get_unfinished()
if len(unfinished_sims) > 0:
sim_mgr.load_unfinished(unfinished_sims[0])
else:
configure_new_simulation(sim_mgr=sim_mgr, code_name=code_name,
sim_name=sim_name)
sim_mgr.simulate()
# Plot results
sns.set_theme()
ax = sns.lineplot(data=sim_mgr.get_current_results(), x="SNR", y="BER",
hue="gamma")
ax.set_yscale('log')
ax.set_ylim((5e-5, 2e-0))
plt.show()
if __name__ == "__main__":
main()