ba-thesis/latex/presentations/midterm/sections/theoretical_background.tex
2022-12-20 14:58:14 +01:00

243 lines
9.7 KiB
TeX

\section{Theoretical Background}%
\label{sec:Theoretical Background}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Motivation}%
\label{sub:Motivation}
\begin{frame}[t]
\frametitle{Motivation}
\todo{TODO}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Presumptions}%
\label{sub:Presumptions}
\begin{frame}[t]
\frametitle{Presumptions: Channel \& Modulation}
\tikzstyle{mapper} = [rectangle, minimum width=1.5cm, minimum height=0.7cm,
rounded corners=0.1cm, text centered, draw=black, fill=KITgreen!80]
\begin{figure}[htpb]
\centering
\begin{tikzpicture}[scale=1, transform shape]
\node (in) {$c\left[ k \right] $};
\node[mapper, right=0.5cm of in] (bpskmap) {Mapper};
\node[right=1.5cm of bpskmap,
draw, circle, inner sep=0pt, minimum size=0.5cm] (add) {$+$};
\node[right=0.5cm of add] (out) {$y\left[ k \right] $};
\node[below=0.5cm of add] (noise) {$n\left[ k \right] $};
\node at ($(bpskmap.east)!0.5!(add.west) + (0,0.3cm)$) {$x\left[ k \right] $};
\draw[->] (in) -- (bpskmap);
\draw[->] (bpskmap) -- (add);
\draw[->] (add) -- (out);
\draw[->] (noise) -- (add);
\end{tikzpicture}
\end{figure}
\begin{itemize}
\item All simulations are performed with BPSK Modulation:
\begin{align*}
x\left[ k \right] = \left( -1 \right)^{c\left[ k \right] },
\hspace{5mm} \boldsymbol{c} \in \mathbb{F}_2^n,
\hspace{2mm} k\in \left\{ 1, \ldots, n \right\}
\end{align*}
\item The used channel model is AWGN:
\begin{align*}
\boldsymbol{y} = \boldsymbol{x} + \boldsymbol{n},
\hspace{5mm}\boldsymbol{n}\sim \mathcal{N}
\left(0,\frac{1}{2}\left(\frac{k}{n}\frac{E_b}{N_0}\right)^{-1}\right),
\hspace{2mm} \boldsymbol{y}, \boldsymbol{n} \in \mathbb{R}^n
\end{align*}
\todo{Why $\frac{1}{2}$}
\item All zeros assumption:
\begin{align*}
\boldsymbol{c} = 0
\end{align*}
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{LP Decoding}%
\label{sub:LP Decoding}
\begin{frame}[t]
\frametitle{LP Decoding}
\begin{minipage}[c]{0.6\linewidth}
\begin{itemize}
\item Codeword Polytope:
\begin{align*}
\text{poly}\left( \mathcal{C} \right) =
\left\{
\sum_{\boldsymbol{c}\in\mathcal{C}}\lambda_{\boldsymbol{c}}
\boldsymbol{c} : \lambda_{\boldsymbol{c}} \ge 0,
\sum_{\boldsymbol{c}\in\mathcal{C}}\lambda_{\boldsymbol{c}} = 1
\right\},
\hspace{5mm} \lambda_{\boldsymbol{c}} \in \mathbb{R}
\end{align*}
\item Cost Function:
\begin{align*}
\sum_{i=1}^{n} \gamma_i c_i,
\hspace{5mm}\gamma_i = \log\left(
\frac{P\left( Y=y_i | C=0 \right) }{P\left( Y=y_i | C=1 \right) } \right)
\end{align*}
\item LP Formulation of ML Decoding:
\begin{align*}
&\text{minimize } \sum_{i=1}^{n} \gamma_i f_i \\
&\text{subject to } \boldsymbol{f}\in\text{poly}\left( \mathcal{C} \right)
\end{align*}
\end{itemize}
\end{minipage}%
\hfill%
\begin{minipage}[c]{0.4\linewidth}
\begin{figure}[H]
\centering
\tikzstyle{codeword} = [color=KITblue, fill=KITblue,
draw, circle, inner sep=0pt, minimum size=4pt]
\tdplotsetmaincoords{60}{245}
\begin{tikzpicture}[scale=1, transform shape, tdplot_main_coords]
% Cube
\draw[dashed] (0, 0, 0) -- (2, 0, 0);
\draw[dashed] (2, 0, 0) -- (2, 0, 2);
\draw[] (2, 0, 2) -- (0, 0, 2);
\draw[] (0, 0, 2) -- (0, 0, 0);
\draw[] (0, 2, 0) -- (2, 2, 0);
\draw[] (2, 2, 0) -- (2, 2, 2);
\draw[] (2, 2, 2) -- (0, 2, 2);
\draw[] (0, 2, 2) -- (0, 2, 0);
\draw[] (0, 0, 0) -- (0, 2, 0);
\draw[dashed] (2, 0, 0) -- (2, 2, 0);
\draw[] (2, 0, 2) -- (2, 2, 2);
\draw[] (0, 0, 2) -- (0, 2, 2);
% Codeword Polytope
\draw[line width=1pt, color=KITblue] (0, 0, 0) -- (2, 0, 2);
\draw[line width=1pt, color=KITblue] (0, 0, 0) -- (2, 2, 0);
\draw[line width=1pt, color=KITblue] (0, 0, 0) -- (0, 2, 2);
\draw[line width=1pt, color=KITblue] (2, 0, 2) -- (2, 2, 0);
\draw[line width=1pt, color=KITblue] (2, 0, 2) -- (0, 2, 2);
\draw[line width=1pt, color=KITblue] (0, 2, 2) -- (2, 2, 0);
% Polytope Annotations
\node[codeword] (c000) at (0, 0, 0) {};% {$\left( 0, 0, 0 \right) $};
\node[codeword] (c101) at (2, 0, 2) {};% {$\left( 1, 0, 1 \right) $};
\node[codeword] (c110) at (2, 2, 0) {};% {$\left( 1, 1, 0 \right) $};
\node[codeword] (c011) at (0, 2, 2) {};% {$\left( 0, 1, 1 \right) $};
\node[color=KITblue, right=0cm of c000] {$\left( 0, 0, 0 \right) $};
\node[color=KITblue, above=0cm of c101] {$\left( 1, 0, 1 \right) $};
\node[color=KITblue, left=0cm of c110] {$\left( 1, 1, 0 \right) $};
\node[color=KITblue, left=0cm of c011] {$\left( 0, 1, 1 \right) $};
% f
\node[color=KITgreen, fill=KITgreen,
draw, circle, inner sep=0pt, minimum size=4pt] (f) at (0.7, 0.7, 1) {};
\node[color=KITgreen, right=0cm of f] {$\boldsymbol{f}$};
\end{tikzpicture}
\caption{$\text{poly}\left( \mathcal{C} \right)$ for $n=3$}
\end{figure}
\end{minipage}
\end{frame}
\begin{frame}[t]
\frametitle{LP Relaxation}
\begin{minipage}[c]{0.6\linewidth}
\begin{itemize}
\item Set of all variable nodes incident to a check node:
\begin{align*}
N\left( j \right) \equiv \left\{
i | i\in \mathcal{I},
\boldsymbol{H}_{i,j} = 1
\right\},
j \in \mathcal{J}
\end{align*}
\item ``Illegal configurations''
\begin{align*}
S \subseteq N\left( j \right), \left| S \right| \text{odd}
\end{align*}
\item Relaxed polytope representation:
\begin{align*}
\sum_{i\in \left( N\left( j \right) \setminus S\right) } f_i
+ \sum_{i\in S} \left( 1 - f_i \right) \ge 1
\end{align*}
``$\boldsymbol{f}$ is separated by at least one bitflip
from all illegal configurations''
\end{itemize}
\end{minipage}%
\hfill%
\begin{minipage}[c]{0.4\linewidth}
\begin{figure}[H]
\centering
\tikzstyle{codeword} = [color=KITblue, fill=KITblue,
draw, circle, inner sep=0pt, minimum size=4pt]
\tdplotsetmaincoords{60}{245}
\begin{tikzpicture}[scale=1, transform shape, tdplot_main_coords]
% Cube
\draw[dashed] (0, 0, 0) -- (2, 0, 0);
\draw[dashed] (2, 0, 0) -- (2, 0, 2);
\draw[] (2, 0, 2) -- (0, 0, 2);
\draw[] (0, 0, 2) -- (0, 0, 0);
\draw[] (0, 2, 0) -- (2, 2, 0);
\draw[] (2, 2, 0) -- (2, 2, 2);
\draw[] (2, 2, 2) -- (0, 2, 2);
\draw[] (0, 2, 2) -- (0, 2, 0);
\draw[] (0, 0, 0) -- (0, 2, 0);
\draw[dashed] (2, 0, 0) -- (2, 2, 0);
\draw[] (2, 0, 2) -- (2, 2, 2);
\draw[] (0, 0, 2) -- (0, 2, 2);
% Codeword Polytope
\draw[line width=1pt, color=KITblue] (0, 0, 0) -- (2, 0, 2);
\draw[line width=1pt, color=KITblue] (0, 0, 0) -- (2, 2, 0);
\draw[line width=1pt, color=KITblue] (0, 0, 0) -- (0, 2, 2);
\draw[line width=1pt, color=KITblue] (2, 0, 2) -- (2, 2, 0);
\draw[line width=1pt, color=KITblue] (2, 0, 2) -- (0, 2, 2);
\draw[line width=1pt, color=KITblue] (0, 2, 2) -- (2, 2, 0);
% Polytope Annotations
\node[codeword, color=KITred] (c111) at (2, 2, 2) {};% {$\left( 0, 0, 0 \right) $};
\node[codeword, color=KITred] (c001) at (0, 0, 2) {};% {$\left( 1, 0, 1 \right) $};
\node[codeword, color=KITred] (c100) at (2, 0, 0) {};% {$\left( 1, 1, 0 \right) $};
\node[codeword, color=KITred] (c010) at (0, 2, 0) {};% {$\left( 0, 1, 1 \right) $};
\node[color=KITred, left=0cm of c111] {$\left( 1, 1, 1 \right) $};
\node[color=KITred, right=0cm of c001] {$\left( 0, 0, 1 \right) $};
\node[color=KITred, right=0.35cm of c100] {$\left( 1, 0, 0 \right) $};
\node[color=KITred, below=0cm of c010] {$\left( 0, 1, 0 \right) $};
\end{tikzpicture}
\caption{Relaxed polytope for $n=3$}
\end{figure}
\end{minipage}
\todo{How is this a relaxation and not just an alternative formulation?}
\end{frame}