ba-thesis/sw/simulate_BER_curve.py

146 lines
3.6 KiB
Python

import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import signal
from timeit import default_timer
from tqdm import tqdm
from utility import codes, noise, misc
from utility.simulation.simulators import GenericMultithreadedSimulator
# from cpp_modules.cpp_decoders import ProximalDecoder
from cpp_modules.cpp_decoders import ProximalDecoder_7_3 as ProximalDecoder
def count_bit_errors(d: np.array, d_hat: np.array) -> int:
return np.sum(d != d_hat)
def task_func(params):
signal.signal(signal.SIGINT, signal.SIG_IGN)
decoder, max_iterations, SNR, n, k = params
c = np.zeros(n)
x_bpsk = c + 1
total_bit_errors = 0
total_frame_errors = 0
dec_fails = 0
num_iterations = 0
for i in range(max_iterations):
x = noise.add_awgn(x_bpsk, SNR, n, k)
x_hat, k_max = decoder.decode(x)
bit_errors = count_bit_errors(x_hat, c)
if bit_errors > 0:
total_bit_errors += bit_errors
total_frame_errors += 1
num_iterations += 1
if k_max == -1:
dec_fails += 1
if total_frame_errors > 4000:
break
BER = total_bit_errors / (num_iterations * n)
FER = total_frame_errors / num_iterations
DFR = dec_fails / (num_iterations + dec_fails)
return BER, FER, DFR, num_iterations
def simulate(H_file, SNRs, max_iterations, omega, K, gammas):
sim = GenericMultithreadedSimulator()
# Define fixed simulation params
H = codes.read_alist_file(f"res/{H_file}")
n_min_k, n = H.shape
k = n - n_min_k
# Define params different for each task
params = {}
for i, SNR in enumerate(SNRs):
for j, gamma in enumerate(gammas):
decoder = ProximalDecoder(H=H.astype('int32'), K=K, omega=omega,
gamma=gamma)
params[f"{i}_{j}"] = (decoder, max_iterations, SNR, n, k)
# Set up simulation
sim.task_params = params
sim.task_func = task_func
sim.start_or_continue()
return sim.get_current_results()
def reformat_data(results, SNRs, gammas):
data = {"BER": np.zeros(3 * 10), "FER": np.zeros(3 * 10),
"DFR": np.zeros(3 * 10), "gamma": np.zeros(3 * 10),
"SNR": np.zeros(3 * 10), "num_iter": np.zeros(3 * 10)}
for i, (key, (BER, FER, DFR, num_iter)) in enumerate(results.items()):
i_SNR, i_gamma = key.split('_')
data["BER"][i] = BER
data["FER"][i] = FER
data["DFR"][i] = DFR
data["num_iter"][i] = num_iter
data["SNR"][i] = SNRs[int(i_SNR)]
data["gamma"][i] = gammas[int(i_gamma)]
print(pd.DataFrame(data))
return pd.DataFrame(data)
def main():
# Set up simulation params
sim_name = "BER_FER_DFR"
# H_file = "96.3.965.alist"
# H_file = "204.3.486.alist"
# H_file = "204.55.187.alist"
# H_file = "408.33.844.alist"
H_file = "BCH_7_4.alist"
# H_file = "BCH_31_11.alist"
# H_file = "BCH_31_26.alist"
SNRs = np.arange(1, 6, 0.5)
max_iterations = 10000
# omega = 0.005
# K = 60
omega = 0.05
K = 60
gammas = [0.15, 0.01, 0.05]
# Run simulation
start_time = default_timer()
results = simulate(H_file, SNRs, max_iterations, omega, K, gammas)
end_time = default_timer()
print(f"duration: {end_time - start_time}")
df = reformat_data(results, SNRs, gammas)
df.to_csv(
f"sim_results/2d_dec_fails_{sim_name}_{misc.slugify(H_file)}.csv")
sns.set_theme()
ax = sns.lineplot(data=df, x="SNR", y="BER", hue="gamma")
ax.set_yscale('log')
ax.set_ylim((5e-5, 2e-0))
plt.show()
if __name__ == "__main__":
main()