

Channel Coding – Graph-based Codes Implementation of LDPC Codes & Beyond

Prof. Dr.-Ing. Laurent Schmalen

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft

www.kit.edu

Overview

- LDPC Codes Encoding & Matrix Construction
 - Encoding LDPC Codes
 - Practical Code Constructions
- Spatially Coupled LDPC Codes
 - Motivation
 - The Regular Ensemble
 - Density Evolution
 - Burst Erasure

Overview

- LDPC Codes Encoding & Matrix Construction
 - Encoding LDPC Codes
 - Practical Code Constructions
- Spatially Coupled LDPC Codes
 - Motivation
 - The Regular Ensemble
 - Density Evolution
 - Burst Erasure

Encoding – Standard Procedure

- In general, LDPC codes can be treated just as any other block code when it comes to encoding
- lacksquare Generator matrix $m{G}$ must be orthogonal to $m{H}$, i.e. $m{G}\cdotm{H}^T=m{0}$
- lacksquare If $oldsymbol{H} = \left(oldsymbol{P}^T \ oldsymbol{I}_{n-k}
 ight)$ then $oldsymbol{G} = \left(oldsymbol{I}_k \ oldsymbol{P}
 ight)$
- Using Gauss-Jordan elimination, ${\pmb H}$ can be converted to $\tilde{{\pmb H}} = \left({{\pmb P}^T} \; {{\pmb I}_{n k}} \right)$ with ${\pmb P}^T$ an $(n k) \times k$ binary matrix and ${\pmb I}_{n k}$ the identity matrix of size $(n k) \times (n k)$
- lacksquare The codeword then is x=uG

Problems with Standard Encoding

- Obtaining G is a complex process
- G will most likely *not be sparse* as P^T will most likely not be sparse, thus the encoding complexity and the storage requirements will be $O(n^2)$.

Encoding – (Almost) Time Linear

- Instead of finding a generator matrix G for parity check matrix H an LDPC code can be encoded using full-rank H directly
- H must be transformed into approximate upper triangular form
- Using only row and column permutations, we obtain H' from H with

$$m{H}' = \left(egin{array}{ccc} m{A} & m{B} & m{T} \ m{C} & m{D} & m{E} \end{array}
ight)$$

where ${m T}$ is a *lower triangular matrix* of size $(m-g) \times (m-g)$, ${m B}$ is of size $(m-g) \times g$, and ${m A}$ is of size $(m-g) \times k$ (if ${m H}'$ is full rank)

- lacksquare g is the number of rows left in C, D and E and is called gap of the approximate representation
- \blacksquare The smaller g, the lower the encoding complexity!
- \blacksquare If the permutation operations are well chosen, we have $g\ll m$

Encoding – (Almost) Time Linear (2)

- lacksquare Starting from H', we can use Gauss-Jordan elimination to clear E
- This is equivalent to the multiplication

$$\left(egin{array}{cc} oldsymbol{I}_{m-g} & oldsymbol{0} \ -oldsymbol{E}oldsymbol{T}^{-1} & oldsymbol{I}_g \end{array}
ight)oldsymbol{H}'$$

which results in

$$egin{aligned} \widetilde{m{H}} = \left(egin{array}{ccc} m{I}_{m-g} & m{0} \ -m{E}m{T}^{-1} & m{I}_g \end{array}
ight) \left(egin{array}{ccc} m{A} & m{B} & m{T} \ m{C} & m{D} & m{E} \end{array}
ight) = \left(egin{array}{ccc} m{A} & m{B} & m{T} \ m{\widetilde{C}} & m{\widetilde{D}} & m{0} \end{array}
ight) \end{aligned}$$

with

$$\widetilde{\boldsymbol{C}} = -\boldsymbol{E}\boldsymbol{T}^{-1}\boldsymbol{A} + \boldsymbol{C}$$

and

$$\widetilde{\boldsymbol{D}} = -\boldsymbol{E}\boldsymbol{T}^{-1}\boldsymbol{B} + \boldsymbol{D}$$

Encoding – (Almost) Time Linear (3)

Finally, the codeword x is divided into 3 parts

$$x = (u p_1 p_2)$$

where ${\pmb u}$ is the k-bit message, ${\pmb p}_1$ holds the first g parity bits and ${\pmb p}_2$ the remaining n-k-g parity bits

lacksquare p_1 is then obtained from

$$oldsymbol{p}_1^T = -\widetilde{oldsymbol{D}}^{-1}\widetilde{oldsymbol{C}}oldsymbol{u}^T$$

Using back-substitution, p_2 can be calculated as

$$oldsymbol{p}_2^T = -oldsymbol{T}^{-1}\left(oldsymbol{A}oldsymbol{u}^T + oldsymbol{B}oldsymbol{p}_1^T
ight) = -oldsymbol{T}^{-1}\left(oldsymbol{A} - oldsymbol{B}\widetilde{oldsymbol{D}}^{-1}\widetilde{oldsymbol{C}}
ight)oldsymbol{u}^T$$

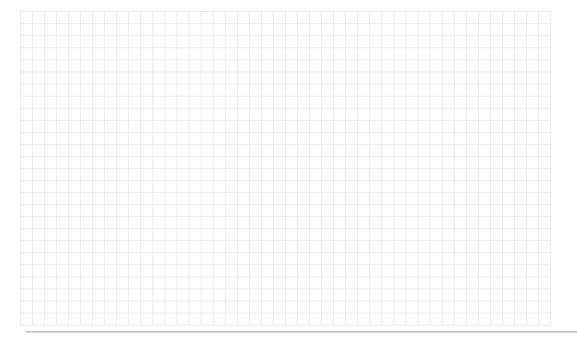
Note that for (matrix) operations over \mathbb{F}_2 , "+" and "-" are equivalent!

Encoding

8 Prof. Dr.-Ing. Laurent Schmalen: CC-GBC – LDPC Codes - Implementation & Beyond

Communications Engineering Lab (CEL)

Encoding



9 Prof. Dr.-Ing. Laurent Schmalen: CC-GBC – LDPC Codes - Implementation & Beyond

Communications Engineering Lab (CEL)

Encoding - (Almost) Time Linear - Complexity

- Although at first glance, the procedure seems complex, it has some complexity advantages
- Many of the intermediate terms needed in the computation are sparse and can be precomputed and stored
- It can be shown that the total complexity is $O(n+g^2)$, which means that when g is very small, it can be neglected and the complexity approaches O(n)
- $\widetilde{m{D}}^{-1}$ is dense but only of size g imes g (g small!) and can be precomputed with cost $O(g^3)$ and stored inside the device
- We illustrate the procedure by a small toy example

Encoding – (Almost) Time Linear – Example

- \blacksquare We are given the matrix H

Encoding – (Almost) Time Linear – Example (2)

- lacksquare We want to encode $oldsymbol{u}=(1\ 1\ 0\ 0\ 1)$ to $oldsymbol{x}=(oldsymbol{u}\ oldsymbol{p}_1\ oldsymbol{p}_2)$
- lacksquare p_1 can be calculated by

$$oldsymbol{p}_1^T = \widetilde{oldsymbol{D}}^{-1}\widetilde{oldsymbol{C}}oldsymbol{u}^T = \left(egin{array}{cccc} 1 & 0 \ 1 & 1 \end{array}
ight) \left(egin{array}{ccccc} 0 & 1 & 1 & 0 & 0 \ 1 & 0 & 0 & 1 & 0 \end{array}
ight) \left(egin{array}{cccc} 1 \ 1 \ 0 \ 0 \ 1 \end{array}
ight) = \left(egin{array}{c} 1 \ 0 \end{array}
ight)$$

and p_2 by

$$\begin{aligned} \boldsymbol{p}_{2}^{T} &= \boldsymbol{T}^{-1} \left(\boldsymbol{A} \boldsymbol{u}^{T} + \boldsymbol{B} \boldsymbol{p}_{1}^{T} \right) \\ &= \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{bmatrix} \begin{pmatrix} 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \end{aligned}$$

Encoding

- Example: 1 Example of encoding
- Example: Example of constructing a parity-check matrix and encoding

¹File: Encode_LDPC.m

²File: Example_Encoding_and_Constructing.m