import numpy as np class ProximalDecoder: """Class implementing the Proximal Decoding algorithm. See "Proximal Decoding for LDPC Codes" by Tadashi Wadayama, and Satoshi Takabe. """ def __init__(self, H: np.array, K: int = 100, omega: float = 0.1, gamma: float = 0.05, eta: float = 1.5): """Construct a new ProximalDecoder Object. :param H: Parity Check Matrix :param K: Max number of iterations to perform when decoding :param omega: Step size for the gradient descent process :param gamma: Positive constant. Arises in the approximation of the prior PDF :param eta: Positive constant slightly larger than one. See 3.2, p. 3 """ self._H = H self._K = K self._step_size = omega self._gamma = gamma self._eta = eta self._k, self._n = self._H.shape self._H_ne_0 = H != 0 @staticmethod def _L_awgn(s: np.array, y: np.array) -> np.array: """Variation of the negative log-likelihood for the special case of AWGN noise. See 4.1, p. 4. """ return s - y def _grad_h(self, x: np.array) -> np.array: """Gradient of the code-constraint polynomial. See 2.3, p. 2.""" # Pre-computations A_prod_matrix = np.tile(x, (self._k, 1)) A_prods = np.prod(A_prod_matrix, axis=1, where=self._H_ne_0) # Calculate gradient sums = np.dot(A_prods**2 - A_prods, self._H) result = 4 * (x**2 - 1) * x + (2 / x) * sums return result def _projection(self, v): """Project a vector onto [-eta, eta]^n in order to avoid numerical instability. Detailed in 3.2, p. 3 (Equation (15)). :param v: Vector to project :return: x clipped to [-eta, eta]^n """ return np.clip(v, -self._eta, self._eta) def _check_parity(self, x_hat: np.array) -> bool: """Perform a parity check for a given codeword. :param x_hat: codeword to be checked (element of [0, 1]^n) :return: True if the parity check passes, i.e. the codeword is valid. False otherwise """ syndrome = np.dot(self._H, x_hat) % 2 return not np.any(syndrome) def decode(self, y: np.array) -> np.array: """Decode a received signal. The algorithm is detailed in 3.2, p.3. This function assumes a BPSK modulated signal and an AWGN channel. :param y: Vector of received values. (y = x + w, where 'x' is element of [-1, 1]^n and 'w' is noise) :return: Most probably sent codeword (element of [0, 1]^n) """ s = np.zeros(self._n) x_hat = np.zeros(self._n) for k in range(self._K): r = s - self._step_size * self._L_awgn(s, y) s = r - self._gamma * self._grad_h(r) s = self._projection(s) # Equation (15) x_hat = np.sign(s) x_hat = (x_hat == -1) * 1 # Map the codeword from [-1, 1]^n to [0, 1]^n if self._check_parity(x_hat): break return x_hat