\appendix \chapter{\acs{LP} Decoding using \acs{ADMM} as a Proximal Algorithm}% \label{chapter:LD Decoding using ADMM as a Proximal Algorithm} \todo{Find out how to properly title and section appendix} %For problems of the form% %\begin{align*} % \text{minimize}\hspace{2mm} & f\left( \boldsymbol{x} \right) % + g\left( \boldsymbol{A}\boldsymbol{x} \right) \\ % \text{subject to}\hspace{2mm} & \boldsymbol{x} \in \mathbb{R}^n %,\end{align*}% %% %a version of \ac{ADMM}, \textit{linearized \ac{ADMM}}, can be expressed %as a proximal algorithm \cite[Sec. 4.4.2]{proximal_algorithms}: %% %\begin{align*} % \boldsymbol{x} &\leftarrow \textbf{prox}_{\mu f}\left( \boldsymbol{x} % - \frac{\mu}{\lambda}\boldsymbol{A}^\text{T}\left( \boldsymbol{A}\boldsymbol{x} % - \boldsymbol{z} + \boldsymbol{u} \right) \right) \\ % \boldsymbol{z} &\leftarrow \textbf{prox}_{\lambda g}\left( \boldsymbol{A}\boldsymbol{x} % + \boldsymbol{u} \right) \\ % \boldsymbol{u} &\leftarrow \boldsymbol{u} + \boldsymbol{A} \boldsymbol{x} - \boldsymbol{z} %.\end{align*} In order to express \ac{LP} decoding using \ac{ADMM} through proximal operators, it can be rewritten to fit the template for \textit{linearized \ac{ADMM}} given in \cite[Sec. 4.4.2]{proximal_algorithms}. We start with the general formulation of the \ac{LP} decoding problem:% % \begin{align*} \text{minimize}\hspace{2mm} & \boldsymbol{\gamma}^\text{T}\tilde{\boldsymbol{c}} \\ \text{subject to}\hspace{2mm} & \boldsymbol{T}_j \tilde{\boldsymbol{c}} \in \mathcal{P}_{d_j} \hspace{5mm} \forall j \in \mathcal{J} .\end{align*} % The constraints can be moved into the objective function: % % \begin{align} \begin{aligned} \text{minimize}\hspace{2mm} & \boldsymbol{\gamma}^\text{T}\tilde{\boldsymbol{c}} + \sum_{j\in \mathcal{J}} I_{P_{d_j}}\left( \boldsymbol{T}_j\tilde{\boldsymbol{c}} \right) \\ \text{subject to}\hspace{2mm} & \tilde{\boldsymbol{c}} \in \mathbb{R}^n, \end{aligned} \label{eq:app:sum_reformulated} \end{align}% % using the \textit{indicator functions} $I_{\mathcal{P}_{d_j}} : \mathbb{R}^{d_j} \rightarrow \left\{ 0, +\infty \right\}, \hspace{3mm} j\in \mathcal{J}$, defined as% % \begin{align*} I_{\mathcal{P}_{d_j}}\left( \boldsymbol{t} \right) := \begin{cases} 0 & \boldsymbol{t} \in \mathcal{P}_{d_j} \\ +\infty & \boldsymbol{t} \not\in \mathcal{P}_{d_j} \end{cases} .\end{align*}% % Further defining % \begin{align*} \boldsymbol{T} := \begin{bmatrix} \boldsymbol{T}_1 \\ \boldsymbol{T}_2 \\ \vdots \\ \boldsymbol{T}_m \end{bmatrix} \hspace{5mm}\text{and}\hspace{5mm} g\left( \boldsymbol{t} \right) = \sum_{j\in\mathcal{J}} I_{\mathcal{P}_{d_j}}\left( \boldsymbol{B}_j \boldsymbol{t} \right) ,\end{align*}% % \todo{Define $\boldsymbol{B}_j$}% problem (\ref{eq:app:sum_reformulated}) becomes% % \begin{align} \begin{aligned} \text{minimize}\hspace{2mm} & \boldsymbol{\gamma}^\text{T}\tilde{\boldsymbol{c}} + g\left( \boldsymbol{T}\tilde{\boldsymbol{c}} \right) \\ \text{subject to}\hspace{2mm} & \tilde{\boldsymbol{c}} \in \mathbb{R}^n. \end{aligned} \label{eq:app:func_reformulated} \end{align} % \todo{Fix $\mu f$ and $\lambda g$ in the steps below}% In this form, it fits the template for linearized \ac{ADMM}. The iterative algorithm can then be expressed as% % \begin{align} \begin{aligned} \tilde{\boldsymbol{c}} &\leftarrow \textbf{prox}_{\mu f}\left( \tilde{\boldsymbol{c}} - \frac{\mu}{\lambda}\boldsymbol{T}^\text{T}\left( \boldsymbol{T}\tilde{\boldsymbol{c}} - \boldsymbol{z} + \boldsymbol{u} \right) \right) \\ \boldsymbol{z} &\leftarrow \textbf{prox}_{\lambda g}\left(\boldsymbol{T}\tilde{\boldsymbol{c}} + \boldsymbol{u} \right) \\ \boldsymbol{u} &\leftarrow \boldsymbol{u} + \boldsymbol{T} \tilde{\boldsymbol{c}} - \boldsymbol{z}. \end{aligned} \label{eq:app:admm_prox} \end{align} % Using the definition of the proximal operator, the $\tilde{\boldsymbol{c}}$ update step can be rewritten to match the definition given in section \ref{sec:lp:Decoding Algorithm}:% % \begin{align*} \tilde{\boldsymbol{c}} &\leftarrow \textbf{prox}_{\mu f}\left( \tilde{\boldsymbol{c}} - \frac{\mu}{\lambda}\boldsymbol{T}^\text{T}\left( \boldsymbol{T}\tilde{\boldsymbol{c}} - \boldsymbol{z} + \boldsymbol{u} \right) \right) \\ &= \argmin_{\tilde{\boldsymbol{c}}}\left( \boldsymbol{\gamma}^\text{T}\tilde{\boldsymbol{c}} - \frac{\mu}{2} \left\Vert \boldsymbol{T}^\text{T} \left( \boldsymbol{T}\tilde{\boldsymbol{c}} - \boldsymbol{z} + \boldsymbol{u} \right) \right\Vert_2^2 \right) \\ &\overset{\text{(a)}}{=} \argmin_{\tilde{\boldsymbol{c}}}\left( \boldsymbol{\gamma}^\text{T} \tilde{\boldsymbol{c}} - \frac{\mu}{2} \left\Vert \boldsymbol{T}\tilde{\boldsymbol{c}} - \boldsymbol{z} + \boldsymbol{u} \right\Vert_2^2 \right) \\ &= \argmin_{\tilde{\boldsymbol{c}}}\left( \boldsymbol{\gamma}^\text{T}\tilde{\boldsymbol{c}} - \frac{\mu}{2} \left\Vert \begin{bmatrix} \boldsymbol{T}_1 \\ \boldsymbol{T}_2 \\ \vdots \\ \boldsymbol{T}_m \end{bmatrix} \tilde{\boldsymbol{c}} - \begin{bmatrix} \boldsymbol{z}_1 \\ \boldsymbol{z}_2 \\ \vdots \\ \boldsymbol{z}_m \end{bmatrix} + \begin{bmatrix} \boldsymbol{u}_1 \\ \boldsymbol{u}_2 \\ \vdots \\ \boldsymbol{u}_m \end{bmatrix} \right\Vert_2^2 \right), \hspace{5mm}\boldsymbol{z}_j,\boldsymbol{u}_j \in \mathbb{F}_2^{d_j}, \hspace{2mm} j\in\mathcal{J}\\ &= \argmin_{\tilde{\boldsymbol{c}}} \left( \boldsymbol{\gamma}^\text{T} \tilde{\boldsymbol{c}} - \frac{\mu}{2} \sum_{j \in J} \left\Vert \boldsymbol{T}_j \tilde{\boldsymbol{c}} - \boldsymbol{z}_j + \boldsymbol{u}_j \right\Vert_2^2 \right) .\end{align*} % Step (a) can be justified by observing that multiplication with $\boldsymbol{T}^\text{T}$ only reorders components, leaving their values unchanged. Similarly to the $\boldsymbol{c}$ update, the $\boldsymbol{z}$ update step can be rewritten. Since $g\left( \cdot \right)$ is separable, so is its proximal operator \cite[Sec. 2.1]{proximal_algorithms}. The $\boldsymbol{z}$ update step can then be expressed as a number of smaller steps:% % \begin{gather*} \boldsymbol{z} \leftarrow \textbf{prox}_{\lambda g} \left(\boldsymbol{T}\tilde{\boldsymbol{c}} + \boldsymbol{u} \right) \\[0.5em] \iff \\[0.5em] \begin{alignedat}{3} \boldsymbol{z}_j &\leftarrow \textbf{prox}_{\lambda I_{\mathcal{P}_{d_j}}}\left( \boldsymbol{T}_j \tilde{\boldsymbol{c}} + \boldsymbol{u}_j \right), \hspace{5mm} && \forall j\in\mathcal{J} \\ & \overset{\text{(b)}}{=} \Pi_{\mathcal{P}_{d_j}}\left( \boldsymbol{T}_j \tilde{\boldsymbol{c}} + \boldsymbol{u}_j \right), \hspace{5mm} && \forall j\in\mathcal{J} ,\end{alignedat} \end{gather*} % where (b) results from the fact that appying the proximal operator on the indicator function of a convex set amounts to a projection onto the set \cite[Sec. 1.2]{proximal_algorithms}.