import typing import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import signal from timeit import default_timer from tqdm import tqdm from dataclasses import dataclass from types import MappingProxyType from utility import codes, noise, misc from utility.simulation.simulators import GenericMultithreadedSimulator from cpp_modules.cpp_decoders import ProximalDecoder_204_102 as ProximalDecoder def count_bit_errors(d: np.array, d_hat: np.array) -> int: return np.sum(d != d_hat) def task_func(params): """Function called by the GenericMultithreadedSimulator instance. Calculate the BER, FER, and DFR for a given SNR and gamma. """ signal.signal(signal.SIGINT, signal.SIG_IGN) decoder = params["decoder"] max_iterations = params["max_iterations"] SNR = params["SNR"] n = params["n"] k = params["k"] c = np.zeros(n) x_bpsk = c + 1 total_bit_errors = 0 total_frame_errors = 0 dec_fails = 0 num_iterations = 0 for i in range(max_iterations): x = noise.add_awgn(x_bpsk, SNR, n, k) x_hat, k_max = decoder.decode(x) bit_errors = count_bit_errors(x_hat, c) if bit_errors > 0: total_bit_errors += bit_errors total_frame_errors += 1 num_iterations += 1 if k_max == -1: dec_fails += 1 if total_frame_errors > 100: break BER = total_bit_errors / (num_iterations * n) FER = total_frame_errors / num_iterations DFR = dec_fails / (num_iterations + dec_fails) return {"BER": BER, "FER": FER, "DFR": DFR, "num_iterations": num_iterations} def simulate(H_file, SNRs, max_iterations, omega, K, gammas): sim = GenericMultithreadedSimulator() # Define fixed simulation params H = codes.read_alist_file(f"res/{H_file}") n_min_k, n = H.shape k = n - n_min_k # Define params different for each task task_params = [] for i, SNR in enumerate(SNRs): for j, gamma in enumerate(gammas): decoder = ProximalDecoder(H=H.astype('int32'), K=K, omega=omega, gamma=gamma) task_params.append( {"decoder": decoder, "max_iterations": max_iterations, "SNR": SNR, "gamma": gamma, "n": n, "k": k}) # Set up simulation sim.task_params = task_params sim.task_func = task_func sim.start_or_continue() return sim.current_results def main(): # Set up simulation params sim_name = "2d_BER_FER_DFR" # H_file = "BCH_7_4.alist" # H_file = "BCH_31_11.alist" # H_file = "BCH_31_26.alist" # H_file = "96.3.965.alist" H_file = "204.33.486.alist" # H_file = "204.33.484.alist" # H_file = "204.55.187.alist" # H_file = "408.33.844.alist" SNRs = np.arange(1, 6, 0.5) max_iterations = 20000 omega = 0.05 K = 100 gammas = np.arange(0.0, 0.17, 0.01) # Run simulation start_time = default_timer() results = simulate(H_file, SNRs, max_iterations, omega, K, gammas) end_time = default_timer() print(f"duration: {end_time - start_time}") df = misc.pgf_reformat_data_3d(results=results, x_param_name="SNR", y_param_name="gamma", z_param_names=["BER", "FER", "DFR", "num_iterations"]) # df.sort_values(by=["gamma", "SNR"]).to_csv( # f"sim_results/{sim_name}_{misc.slugify(H_file)}.csv", index=False) sns.set_theme() ax = sns.lineplot(data=df, x="SNR", y="BER", hue="gamma") ax.set_yscale('log') ax.set_ylim((5e-5, 2e-0)) plt.show() if __name__ == "__main__": main()