First round of corrections
This commit is contained in:
parent
c18d0f8c12
commit
f433607ce6
@ -121,7 +121,7 @@
|
|||||||
|
|
||||||
|
|
||||||
\title{Application of Optimization Algorithms for Channel Decoding}
|
\title{Application of Optimization Algorithms for Channel Decoding}
|
||||||
\subtitle{\small Midterm Presentation}
|
\subtitle{\small Midterm Presentation - 27.01.2023}
|
||||||
%\author{Andreas Tsouchlos}
|
%\author{Andreas Tsouchlos}
|
||||||
\author{\vspace{1.5mm} Andreas Tsouchlos}
|
\author{\vspace{1.5mm} Andreas Tsouchlos}
|
||||||
|
|
||||||
|
|||||||
@ -116,7 +116,7 @@ Output $\boldsymbol{\hat{x}}$
|
|||||||
|
|
||||||
\begin{minipage}[c]{0.6\linewidth}
|
\begin{minipage}[c]{0.6\linewidth}
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item Codeword Polytope:
|
\item Codeword polytope:
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
\text{poly}\left( \mathcal{C} \right) =
|
\text{poly}\left( \mathcal{C} \right) =
|
||||||
\left\{
|
\left\{
|
||||||
@ -126,13 +126,13 @@ Output $\boldsymbol{\hat{x}}$
|
|||||||
\right\},
|
\right\},
|
||||||
\hspace{5mm} \lambda_{\boldsymbol{c}} \in \mathbb{R}
|
\hspace{5mm} \lambda_{\boldsymbol{c}} \in \mathbb{R}
|
||||||
\end{align*}
|
\end{align*}
|
||||||
\item Cost Function:
|
\item Cost function:
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
\sum_{i=1}^{n} \gamma_i c_i,
|
\sum_{i=1}^{n} \gamma_i c_i,
|
||||||
\hspace{5mm}\gamma_i = \log\left(
|
\hspace{5mm}\gamma_i = \log\left(
|
||||||
\frac{P\left( Y=y_i | C=0 \right) }{P\left( Y=y_i | C=1 \right) } \right)
|
\frac{P\left( Y=y_i | C=0 \right) }{P\left( Y=y_i | C=1 \right) } \right)
|
||||||
\end{align*}
|
\end{align*}
|
||||||
\item LP Formulation of ML Decoding:
|
\item LP formulation of ML decoding:
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
&\text{minimize } \sum_{i=1}^{n} \gamma_i f_i \\
|
&\text{minimize } \sum_{i=1}^{n} \gamma_i f_i \\
|
||||||
&\text{subject to } \boldsymbol{f}\in\text{poly}\left( \mathcal{C} \right)
|
&\text{subject to } \boldsymbol{f}\in\text{poly}\left( \mathcal{C} \right)
|
||||||
|
|||||||
@ -67,8 +67,8 @@
|
|||||||
\end{figure}
|
\end{figure}
|
||||||
|
|
||||||
\item $\mathcal{O}\left(n \right) $ time complexity - same as BP;
|
\item $\mathcal{O}\left(n \right) $ time complexity - same as BP;
|
||||||
Only multiplication and addition necessary \cite{proximal_paper}
|
only multiplication and addition necessary \cite{proximal_paper}
|
||||||
\item Measured Performance: $\sim\SI{10000}{frames / \second}$
|
\item Measured Performance: $\sim\SI{10000}{}$ frames/s
|
||||||
- Intel Core i7-7700HQ @ 2.80GHz; $n=204$
|
- Intel Core i7-7700HQ @ 2.80GHz; $n=204$
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
\vspace{3mm}
|
\vspace{3mm}
|
||||||
@ -81,8 +81,8 @@
|
|||||||
\setcounter{footnote}{0}
|
\setcounter{footnote}{0}
|
||||||
|
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item Comparison of simulation
|
\item Analysis of simulation
|
||||||
\footnote{(3,6) regular LDPC Code with $n=204, k=102$
|
\footnote{(3,6) regular LDPC code with $n=204, k=102$
|
||||||
\cite[\text{204.33.484}]{mackay_enc}}
|
\cite[\text{204.33.484}]{mackay_enc}}
|
||||||
results for different values of $\gamma$
|
results for different values of $\gamma$
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
@ -367,8 +367,8 @@
|
|||||||
\setcounter{footnote}{0}
|
\setcounter{footnote}{0}
|
||||||
|
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item Comparison of simulated
|
\item Analysis of simulated
|
||||||
\footnote{(3,6) regular LDPC Code with $n=204, k=102$
|
\footnote{(3,6) regular LDPC code with $n=204, k=102$
|
||||||
\cite[\text{204.33.484}]{mackay_enc}}
|
\cite[\text{204.33.484}]{mackay_enc}}
|
||||||
BER and FER
|
BER and FER
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
@ -660,8 +660,8 @@ Output $\boldsymbol{\hat{x}}$
|
|||||||
\setcounter{footnote}{0}
|
\setcounter{footnote}{0}
|
||||||
|
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item For larger $n$, the Gradient itself starts to oscillate
|
\item For larger $n$, the gradient itself starts to oscillate
|
||||||
\item The Amplitude of the oscillation seems to be highly correlated
|
\item The amplitude of the oscillation seems to be highly correlated
|
||||||
with the probability of a bit error
|
with the probability of a bit error
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
|
||||||
@ -721,12 +721,12 @@ Output $\boldsymbol{\hat{x}}$
|
|||||||
\end{axis}
|
\end{axis}
|
||||||
\end{tikzpicture}
|
\end{tikzpicture}
|
||||||
|
|
||||||
\caption{Corellation between bit error and amplitude of oscillation}
|
\caption{Correlation between bit error and amplitude of oscillation}
|
||||||
\end{subfigure}
|
\end{subfigure}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
|
|
||||||
|
|
||||||
\footnotetext{A single decoding is shown, using a (3,6) regular LDPC Code
|
\footnotetext{A single decoding is shown, using a (3,6) regular LDPC code
|
||||||
with $n=204, k=102$ \cite[\text{204.33.484}]{mackay_enc};
|
with $n=204, k=102$ \cite[\text{204.33.484}]{mackay_enc};
|
||||||
$\gamma = 0.05, \omega = 0.05, E_b / N_0 = \SI{5}{dB}$}
|
$\gamma = 0.05, \omega = 0.05, E_b / N_0 = \SI{5}{dB}$}
|
||||||
\end{frame}
|
\end{frame}
|
||||||
@ -1364,11 +1364,11 @@ $\textcolor{KITblue}{\text{Output }\boldsymbol{\tilde{x}}_n\text{ with lowest }d
|
|||||||
\end{axis}
|
\end{axis}
|
||||||
\end{tikzpicture}
|
\end{tikzpicture}
|
||||||
|
|
||||||
\caption{Average error for $\SI{500000}{decodings},
|
\caption{Average error for $\SI{500000}{}$ decodings,$
|
||||||
\omega = 0.05, \gamma = 0.05, K=200$\footnotemark}
|
\omega = 0.05, \gamma = 0.05, K=200$\footnotemark}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
|
|
||||||
\footnotetext{Simulation performed with (3,6) regular LDPC Code with $n=204, k=102$
|
\footnotetext{Simulation performed with (3,6) regular LDPC code with $n=204, k=102$
|
||||||
\cite[Code: 204.33.484]{mackay_enc}}
|
\cite[Code: 204.33.484]{mackay_enc}}
|
||||||
|
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
|
|||||||
@ -1,5 +1,5 @@
|
|||||||
\section{Forthcoming Examination}%
|
\section{Forthcoming Examinations}%
|
||||||
\label{sec:Forthcoming Examination}
|
\label{sec:Forthcoming Examinations}
|
||||||
|
|
||||||
|
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
@ -7,7 +7,7 @@
|
|||||||
\label{sub:LP Decoding}
|
\label{sub:LP Decoding}
|
||||||
|
|
||||||
\begin{frame}[t]
|
\begin{frame}[t]
|
||||||
\frametitle{Forthcoming Examination: LP Decoding}
|
\frametitle{Forthcoming Examinations: LP Decoding}
|
||||||
|
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item Test the (Alternating Direction Method of Multipliers) ADMM
|
\item Test the (Alternating Direction Method of Multipliers) ADMM
|
||||||
|
|||||||
@ -11,8 +11,8 @@
|
|||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item The general [ML] decoding problem for linear codes and the general problem
|
\item The general [ML] decoding problem for linear codes and the general problem
|
||||||
of finding the weights of a linear code are both NP-complete. \cite{ml_np_hard_proof}
|
of finding the weights of a linear code are both NP-complete. \cite{ml_np_hard_proof}
|
||||||
\item The iterative message–passing algorithms preffered in practice do not guarantee
|
\item The iterative message–passing algorithms preferred in practice do not guarantee
|
||||||
optimality and may fail to decode correctly when the graph contains cycles
|
optimality and may fail to decode correctly when the graph contains cycles.
|
||||||
\cite{ldpc_conv}
|
\cite{ldpc_conv}
|
||||||
\item The standard message-passing algorithms used for decoding [LDPC and turbo codes]
|
\item The standard message-passing algorithms used for decoding [LDPC and turbo codes]
|
||||||
are often difficult to analyze. \cite{feldman_thesis}
|
are often difficult to analyze. \cite{feldman_thesis}
|
||||||
@ -48,7 +48,7 @@
|
|||||||
|
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item Examination of ``Proximal Decoding''
|
\item Examination of ``Proximal Decoding''
|
||||||
\item Examination of ``Iterative Point Decoding''
|
\item Examination of ``Interior Point Decoding''
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
\end{frame}
|
\end{frame}
|
||||||
|
|
||||||
@ -66,14 +66,14 @@
|
|||||||
\centering
|
\centering
|
||||||
|
|
||||||
\begin{tikzpicture}[scale=1, transform shape]
|
\begin{tikzpicture}[scale=1, transform shape]
|
||||||
\node (in) {$c\left[ k \right] $};
|
\node (in) {$\boldsymbol{c}$};
|
||||||
\node[mapper, right=0.5cm of in] (bpskmap) {Mapper};
|
\node[mapper, right=0.5cm of in] (bpskmap) {Mapper};
|
||||||
\node[right=1.5cm of bpskmap,
|
\node[right=1.5cm of bpskmap,
|
||||||
draw, circle, inner sep=0pt, minimum size=0.5cm] (add) {$+$};
|
draw, circle, inner sep=0pt, minimum size=0.5cm] (add) {$+$};
|
||||||
\node[right=0.5cm of add] (out) {$y\left[ k \right] $};
|
\node[right=0.5cm of add] (out) {$\boldsymbol{y}$};
|
||||||
\node[below=0.5cm of add] (noise) {$n\left[ k \right] $};
|
\node[below=0.5cm of add] (noise) {$\boldsymbol{z}$};
|
||||||
|
|
||||||
\node at ($(bpskmap.east)!0.5!(add.west) + (0,0.3cm)$) {$x\left[ k \right] $};
|
\node at ($(bpskmap.east)!0.5!(add.west) + (0,0.3cm)$) {$\boldsymbol{x}$};
|
||||||
|
|
||||||
\draw[->] (in) -- (bpskmap);
|
\draw[->] (in) -- (bpskmap);
|
||||||
\draw[->] (bpskmap) -- (add);
|
\draw[->] (bpskmap) -- (add);
|
||||||
@ -83,22 +83,21 @@
|
|||||||
\end{figure}
|
\end{figure}
|
||||||
|
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item All simulations are performed with BPSK Modulation:
|
\item All simulations are performed with BPSK modulation:
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
x\left[ k \right] = \left( -1 \right)^{c\left[ k \right] },
|
\boldsymbol{x} = \left( -1 \right)^{\boldsymbol{c}},
|
||||||
\hspace{5mm} \boldsymbol{c} \in \mathbb{F}_2^n,
|
\hspace{5mm} \boldsymbol{c} \in \mathbb{F}_2^n
|
||||||
\hspace{2mm} k\in \left\{ 1, \ldots, n \right\}
|
|
||||||
\end{align*}
|
\end{align*}
|
||||||
\item The used channel model is AWGN:
|
\item The used channel model is AWGN:
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
\boldsymbol{y} = \boldsymbol{x} + \boldsymbol{n},
|
\boldsymbol{y} = \boldsymbol{x} + \boldsymbol{z},
|
||||||
\hspace{5mm}\boldsymbol{n}\sim \mathcal{N}
|
\hspace{5mm}\boldsymbol{z}\sim \mathcal{N}
|
||||||
\left(0,\frac{1}{2}\left(\frac{k}{n}\frac{E_b}{N_0}\right)^{-1}\right),
|
\left(0,\frac{1}{2}\left(\frac{k}{n}\frac{E_b}{N_0}\right)^{-1}\right),
|
||||||
\hspace{2mm} \boldsymbol{y}, \boldsymbol{n} \in \mathbb{R}^n
|
\hspace{2mm} \boldsymbol{y}, \boldsymbol{z} \in \mathbb{R}^n
|
||||||
\end{align*}
|
\end{align*}
|
||||||
\item All-zeros assumption:
|
\item All-zeros assumption:
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
\boldsymbol{c} = 0
|
\boldsymbol{c} = \boldsymbol{0}
|
||||||
\end{align*}
|
\end{align*}
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
\end{frame}
|
\end{frame}
|
||||||
@ -113,7 +112,7 @@
|
|||||||
|
|
||||||
\begin{minipage}[c]{0.6\linewidth}
|
\begin{minipage}[c]{0.6\linewidth}
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item Reormulate decoding problem as optimization problem
|
\item Reformulate decoding problem as optimization problem
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item Establish objective function
|
\item Establish objective function
|
||||||
\item Establish constraints
|
\item Establish constraints
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user