First round of corrections
This commit is contained in:
parent
c18d0f8c12
commit
f433607ce6
@ -121,7 +121,7 @@
|
||||
|
||||
|
||||
\title{Application of Optimization Algorithms for Channel Decoding}
|
||||
\subtitle{\small Midterm Presentation}
|
||||
\subtitle{\small Midterm Presentation - 27.01.2023}
|
||||
%\author{Andreas Tsouchlos}
|
||||
\author{\vspace{1.5mm} Andreas Tsouchlos}
|
||||
|
||||
|
||||
@ -116,7 +116,7 @@ Output $\boldsymbol{\hat{x}}$
|
||||
|
||||
\begin{minipage}[c]{0.6\linewidth}
|
||||
\begin{itemize}
|
||||
\item Codeword Polytope:
|
||||
\item Codeword polytope:
|
||||
\begin{align*}
|
||||
\text{poly}\left( \mathcal{C} \right) =
|
||||
\left\{
|
||||
@ -126,13 +126,13 @@ Output $\boldsymbol{\hat{x}}$
|
||||
\right\},
|
||||
\hspace{5mm} \lambda_{\boldsymbol{c}} \in \mathbb{R}
|
||||
\end{align*}
|
||||
\item Cost Function:
|
||||
\item Cost function:
|
||||
\begin{align*}
|
||||
\sum_{i=1}^{n} \gamma_i c_i,
|
||||
\hspace{5mm}\gamma_i = \log\left(
|
||||
\frac{P\left( Y=y_i | C=0 \right) }{P\left( Y=y_i | C=1 \right) } \right)
|
||||
\end{align*}
|
||||
\item LP Formulation of ML Decoding:
|
||||
\item LP formulation of ML decoding:
|
||||
\begin{align*}
|
||||
&\text{minimize } \sum_{i=1}^{n} \gamma_i f_i \\
|
||||
&\text{subject to } \boldsymbol{f}\in\text{poly}\left( \mathcal{C} \right)
|
||||
|
||||
@ -67,8 +67,8 @@
|
||||
\end{figure}
|
||||
|
||||
\item $\mathcal{O}\left(n \right) $ time complexity - same as BP;
|
||||
Only multiplication and addition necessary \cite{proximal_paper}
|
||||
\item Measured Performance: $\sim\SI{10000}{frames / \second}$
|
||||
only multiplication and addition necessary \cite{proximal_paper}
|
||||
\item Measured Performance: $\sim\SI{10000}{}$ frames/s
|
||||
- Intel Core i7-7700HQ @ 2.80GHz; $n=204$
|
||||
\end{itemize}
|
||||
\vspace{3mm}
|
||||
@ -81,8 +81,8 @@
|
||||
\setcounter{footnote}{0}
|
||||
|
||||
\begin{itemize}
|
||||
\item Comparison of simulation
|
||||
\footnote{(3,6) regular LDPC Code with $n=204, k=102$
|
||||
\item Analysis of simulation
|
||||
\footnote{(3,6) regular LDPC code with $n=204, k=102$
|
||||
\cite[\text{204.33.484}]{mackay_enc}}
|
||||
results for different values of $\gamma$
|
||||
\end{itemize}
|
||||
@ -367,8 +367,8 @@
|
||||
\setcounter{footnote}{0}
|
||||
|
||||
\begin{itemize}
|
||||
\item Comparison of simulated
|
||||
\footnote{(3,6) regular LDPC Code with $n=204, k=102$
|
||||
\item Analysis of simulated
|
||||
\footnote{(3,6) regular LDPC code with $n=204, k=102$
|
||||
\cite[\text{204.33.484}]{mackay_enc}}
|
||||
BER and FER
|
||||
\end{itemize}
|
||||
@ -660,8 +660,8 @@ Output $\boldsymbol{\hat{x}}$
|
||||
\setcounter{footnote}{0}
|
||||
|
||||
\begin{itemize}
|
||||
\item For larger $n$, the Gradient itself starts to oscillate
|
||||
\item The Amplitude of the oscillation seems to be highly correlated
|
||||
\item For larger $n$, the gradient itself starts to oscillate
|
||||
\item The amplitude of the oscillation seems to be highly correlated
|
||||
with the probability of a bit error
|
||||
\end{itemize}
|
||||
|
||||
@ -721,12 +721,12 @@ Output $\boldsymbol{\hat{x}}$
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
|
||||
\caption{Corellation between bit error and amplitude of oscillation}
|
||||
\caption{Correlation between bit error and amplitude of oscillation}
|
||||
\end{subfigure}
|
||||
\end{figure}
|
||||
|
||||
|
||||
\footnotetext{A single decoding is shown, using a (3,6) regular LDPC Code
|
||||
\footnotetext{A single decoding is shown, using a (3,6) regular LDPC code
|
||||
with $n=204, k=102$ \cite[\text{204.33.484}]{mackay_enc};
|
||||
$\gamma = 0.05, \omega = 0.05, E_b / N_0 = \SI{5}{dB}$}
|
||||
\end{frame}
|
||||
@ -1364,11 +1364,11 @@ $\textcolor{KITblue}{\text{Output }\boldsymbol{\tilde{x}}_n\text{ with lowest }d
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
|
||||
\caption{Average error for $\SI{500000}{decodings},
|
||||
\caption{Average error for $\SI{500000}{}$ decodings,$
|
||||
\omega = 0.05, \gamma = 0.05, K=200$\footnotemark}
|
||||
\end{figure}
|
||||
|
||||
\footnotetext{Simulation performed with (3,6) regular LDPC Code with $n=204, k=102$
|
||||
\footnotetext{Simulation performed with (3,6) regular LDPC code with $n=204, k=102$
|
||||
\cite[Code: 204.33.484]{mackay_enc}}
|
||||
|
||||
\begin{itemize}
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
\section{Forthcoming Examination}%
|
||||
\label{sec:Forthcoming Examination}
|
||||
\section{Forthcoming Examinations}%
|
||||
\label{sec:Forthcoming Examinations}
|
||||
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
@ -7,7 +7,7 @@
|
||||
\label{sub:LP Decoding}
|
||||
|
||||
\begin{frame}[t]
|
||||
\frametitle{Forthcoming Examination: LP Decoding}
|
||||
\frametitle{Forthcoming Examinations: LP Decoding}
|
||||
|
||||
\begin{itemize}
|
||||
\item Test the (Alternating Direction Method of Multipliers) ADMM
|
||||
|
||||
@ -11,8 +11,8 @@
|
||||
\begin{itemize}
|
||||
\item The general [ML] decoding problem for linear codes and the general problem
|
||||
of finding the weights of a linear code are both NP-complete. \cite{ml_np_hard_proof}
|
||||
\item The iterative message–passing algorithms preffered in practice do not guarantee
|
||||
optimality and may fail to decode correctly when the graph contains cycles
|
||||
\item The iterative message–passing algorithms preferred in practice do not guarantee
|
||||
optimality and may fail to decode correctly when the graph contains cycles.
|
||||
\cite{ldpc_conv}
|
||||
\item The standard message-passing algorithms used for decoding [LDPC and turbo codes]
|
||||
are often difficult to analyze. \cite{feldman_thesis}
|
||||
@ -48,7 +48,7 @@
|
||||
|
||||
\begin{itemize}
|
||||
\item Examination of ``Proximal Decoding''
|
||||
\item Examination of ``Iterative Point Decoding''
|
||||
\item Examination of ``Interior Point Decoding''
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
@ -66,14 +66,14 @@
|
||||
\centering
|
||||
|
||||
\begin{tikzpicture}[scale=1, transform shape]
|
||||
\node (in) {$c\left[ k \right] $};
|
||||
\node (in) {$\boldsymbol{c}$};
|
||||
\node[mapper, right=0.5cm of in] (bpskmap) {Mapper};
|
||||
\node[right=1.5cm of bpskmap,
|
||||
draw, circle, inner sep=0pt, minimum size=0.5cm] (add) {$+$};
|
||||
\node[right=0.5cm of add] (out) {$y\left[ k \right] $};
|
||||
\node[below=0.5cm of add] (noise) {$n\left[ k \right] $};
|
||||
\node[right=0.5cm of add] (out) {$\boldsymbol{y}$};
|
||||
\node[below=0.5cm of add] (noise) {$\boldsymbol{z}$};
|
||||
|
||||
\node at ($(bpskmap.east)!0.5!(add.west) + (0,0.3cm)$) {$x\left[ k \right] $};
|
||||
\node at ($(bpskmap.east)!0.5!(add.west) + (0,0.3cm)$) {$\boldsymbol{x}$};
|
||||
|
||||
\draw[->] (in) -- (bpskmap);
|
||||
\draw[->] (bpskmap) -- (add);
|
||||
@ -83,22 +83,21 @@
|
||||
\end{figure}
|
||||
|
||||
\begin{itemize}
|
||||
\item All simulations are performed with BPSK Modulation:
|
||||
\item All simulations are performed with BPSK modulation:
|
||||
\begin{align*}
|
||||
x\left[ k \right] = \left( -1 \right)^{c\left[ k \right] },
|
||||
\hspace{5mm} \boldsymbol{c} \in \mathbb{F}_2^n,
|
||||
\hspace{2mm} k\in \left\{ 1, \ldots, n \right\}
|
||||
\boldsymbol{x} = \left( -1 \right)^{\boldsymbol{c}},
|
||||
\hspace{5mm} \boldsymbol{c} \in \mathbb{F}_2^n
|
||||
\end{align*}
|
||||
\item The used channel model is AWGN:
|
||||
\begin{align*}
|
||||
\boldsymbol{y} = \boldsymbol{x} + \boldsymbol{n},
|
||||
\hspace{5mm}\boldsymbol{n}\sim \mathcal{N}
|
||||
\boldsymbol{y} = \boldsymbol{x} + \boldsymbol{z},
|
||||
\hspace{5mm}\boldsymbol{z}\sim \mathcal{N}
|
||||
\left(0,\frac{1}{2}\left(\frac{k}{n}\frac{E_b}{N_0}\right)^{-1}\right),
|
||||
\hspace{2mm} \boldsymbol{y}, \boldsymbol{n} \in \mathbb{R}^n
|
||||
\hspace{2mm} \boldsymbol{y}, \boldsymbol{z} \in \mathbb{R}^n
|
||||
\end{align*}
|
||||
\item All-zeros assumption:
|
||||
\begin{align*}
|
||||
\boldsymbol{c} = 0
|
||||
\boldsymbol{c} = \boldsymbol{0}
|
||||
\end{align*}
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
@ -113,7 +112,7 @@
|
||||
|
||||
\begin{minipage}[c]{0.6\linewidth}
|
||||
\begin{itemize}
|
||||
\item Reormulate decoding problem as optimization problem
|
||||
\item Reformulate decoding problem as optimization problem
|
||||
\begin{itemize}
|
||||
\item Establish objective function
|
||||
\item Establish constraints
|
||||
|
||||
Loading…
Reference in New Issue
Block a user