Added todos
This commit is contained in:
parent
4643a77973
commit
d333e461a7
@ -199,6 +199,8 @@ of the \acp{LLR} $\gamma_i$ \cite[Sec. 2.5]{feldman_thesis}:%
|
||||
{f_{Y_i | C_i} \left( y_i \mid C_i = 1 \right) } \right)
|
||||
.\end{align*}
|
||||
%
|
||||
\todo{$C_i$ or $c_i$?}%
|
||||
%
|
||||
The authors propose the following cost function%
|
||||
\footnote{In this context, \textit{cost function} and \textit{objective function}
|
||||
have the same meaning.}
|
||||
@ -208,6 +210,8 @@ for the \ac{LP} decoding problem:%
|
||||
g\left( \boldsymbol{c} \right) = \sum_{i=1}^{n} \gamma_i c_i
|
||||
.\end{align*}
|
||||
%
|
||||
\todo{Write as dot product}
|
||||
%
|
||||
With this cost function, the exact integer linear program formulation of \ac{ML}
|
||||
decoding is the following:%
|
||||
%
|
||||
@ -234,6 +238,8 @@ decoding, redefining the constraints in terms of the \text{codeword polytope}
|
||||
\sum_{\boldsymbol{c} \in \mathcal{C}} \lambda_{\boldsymbol{c}} = 1 \right\}
|
||||
,\end{align*} %
|
||||
%
|
||||
\todo{$\lambda$ might be confusing here}%
|
||||
%
|
||||
which represents the \textit{convex hull} of all possible codewords,
|
||||
i.e., the convex set of linear combinations of all codewords.
|
||||
This corresponds to simply lifting the integer requirement.
|
||||
|
||||
Loading…
Reference in New Issue
Block a user