Fixed SNR amplitude; Fixed BER calculation
This commit is contained in:
parent
74ee1cc4db
commit
be6ded2162
@ -19,15 +19,16 @@ def _get_noise_amp_from_SNR(SNR: float, signal_amp: float = 1) -> float:
|
|||||||
return noise_amp
|
return noise_amp
|
||||||
|
|
||||||
|
|
||||||
def add_awgn(c: np.array, SNR: float) -> np.array:
|
def add_awgn(c: np.array, SNR: float, signal_amp: float = 1) -> np.array:
|
||||||
"""Add Additive White Gaussian Noise to a data vector. As this function adds random noise to the input,
|
"""Add Additive White Gaussian Noise to a data vector. As this function adds random noise to the input,
|
||||||
the output changes, even if it is called multiple times with the same input.
|
the output changes, even if it is called multiple times with the same input.
|
||||||
|
|
||||||
:param c: Binary vector representing the data to be transmitted
|
:param c: Binary vector representing the data to be transmitted
|
||||||
:param SNR: Signal-to-Noise-Ratio in dB
|
:param SNR: Signal-to-Noise-Ratio in dB
|
||||||
|
:param signal_amp: Amplitude of the signal. Used for the noise amplitude calculation
|
||||||
:return: Data vector with added noise
|
:return: Data vector with added noise
|
||||||
"""
|
"""
|
||||||
noise_amp = _get_noise_amp_from_SNR(SNR, signal_amp=1)
|
noise_amp = _get_noise_amp_from_SNR(SNR, signal_amp=signal_amp)
|
||||||
y = c + np.random.normal(scale=noise_amp, size=c.size)
|
y = c + np.random.normal(scale=noise_amp, size=c.size)
|
||||||
return y
|
return y
|
||||||
|
|
||||||
@ -66,6 +67,7 @@ def test_decoder(decoder: typing.Any,
|
|||||||
bar_format="{l_bar}{bar}| {n_fmt}/{total_fmt}"):
|
bar_format="{l_bar}{bar}| {n_fmt}/{total_fmt}"):
|
||||||
|
|
||||||
total_bit_errors = 0
|
total_bit_errors = 0
|
||||||
|
total_bits = 0
|
||||||
|
|
||||||
for n in tqdm(range(N_max), desc=f"Simulating for SNR = {SNR} dB",
|
for n in tqdm(range(N_max), desc=f"Simulating for SNR = {SNR} dB",
|
||||||
position=1,
|
position=1,
|
||||||
@ -74,15 +76,15 @@ def test_decoder(decoder: typing.Any,
|
|||||||
|
|
||||||
# TODO: Is this a valid simulation? Can we just add AWGN to the codeword, ignoring and modulation and (
|
# TODO: Is this a valid simulation? Can we just add AWGN to the codeword, ignoring and modulation and (
|
||||||
# e.g. matched) filtering?
|
# e.g. matched) filtering?
|
||||||
y = add_awgn(x, SNR)
|
y = add_awgn(x, SNR, signal_amp=(1 / np.sqrt(2)))
|
||||||
y_hat = decoder.decode(y)
|
y_hat = decoder.decode(y)
|
||||||
|
|
||||||
total_bit_errors += count_bit_errors(c, y_hat)
|
total_bit_errors += count_bit_errors(c, y_hat)
|
||||||
|
total_bits += c.size
|
||||||
|
|
||||||
if total_bit_errors >= target_bit_errors:
|
if total_bit_errors >= target_bit_errors:
|
||||||
break
|
break
|
||||||
|
|
||||||
total_bits = c.size * N_max
|
|
||||||
BERs.append(total_bit_errors / total_bits)
|
BERs.append(total_bit_errors / total_bits)
|
||||||
|
|
||||||
return np.array(SNRs), np.array(BERs)
|
return np.array(SNRs), np.array(BERs)
|
||||||
|
|||||||
@ -21,7 +21,7 @@ def main():
|
|||||||
|
|
||||||
# Test decoder
|
# Test decoder
|
||||||
|
|
||||||
d = np.array([0, 1, 0, 1])
|
d = np.array([0, 1, 1, 1])
|
||||||
c = np.dot(G.transpose(), d) % 2
|
c = np.dot(G.transpose(), d) % 2
|
||||||
|
|
||||||
print(f"Simulating with c = {c}")
|
print(f"Simulating with c = {c}")
|
||||||
@ -33,6 +33,7 @@ def main():
|
|||||||
|
|
||||||
ax = sns.lineplot(data=data, x="SNR", y="BER")
|
ax = sns.lineplot(data=data, x="SNR", y="BER")
|
||||||
ax.set(yscale="log")
|
ax.set(yscale="log")
|
||||||
|
ax.set_yticks([10e-5, 10e-4, 10e-3, 10e-2, 10e-1, 10e0])
|
||||||
# ax.set_ylim([10e-6, 10e0])
|
# ax.set_ylim([10e-6, 10e0])
|
||||||
plt.show()
|
plt.show()
|
||||||
|
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user