Fixed mistake in implementation details; |N_v(i)| -> d_i
This commit is contained in:
parent
ff0e2beea0
commit
bcf05d26af
@ -134,8 +134,8 @@ examplary code, which is described by the generator and parity-check matrices%
|
|||||||
and has only two possible codewords:
|
and has only two possible codewords:
|
||||||
%
|
%
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
\mathcal{C} = \left\{ \begin{bmatrix} 0 & 0 & 0 \end{bmatrix},
|
\mathcal{C} = \left\{ \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix},
|
||||||
\begin{bmatrix} 0 & 1 & 1 \end{bmatrix} \right\}
|
\begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \right\}
|
||||||
.\end{align*}
|
.\end{align*}
|
||||||
%
|
%
|
||||||
Figure \ref{fig:lp:poly:exact_ilp} shows the domain of exact \ac{ML} decoding.
|
Figure \ref{fig:lp:poly:exact_ilp} shows the domain of exact \ac{ML} decoding.
|
||||||
@ -631,7 +631,7 @@ The same is true for $\left( \boldsymbol{\lambda}_j \right)_i$.}
|
|||||||
\cite[Sec. III. B.]{original_admm}:%
|
\cite[Sec. III. B.]{original_admm}:%
|
||||||
%
|
%
|
||||||
\begin{alignat*}{3}
|
\begin{alignat*}{3}
|
||||||
\tilde{c}_i &\leftarrow \frac{1}{\left| N_v\left( i \right) \right|} \left(
|
\tilde{c}_i &\leftarrow \frac{1}{d_i} \left(
|
||||||
\sum_{j\in N_v\left( i \right) } \Big( \left( \boldsymbol{z}_j \right)_i
|
\sum_{j\in N_v\left( i \right) } \Big( \left( \boldsymbol{z}_j \right)_i
|
||||||
- \frac{1}{\mu} \left( \boldsymbol{\lambda}_j \right)_i \Big)
|
- \frac{1}{\mu} \left( \boldsymbol{\lambda}_j \right)_i \Big)
|
||||||
- \frac{\gamma_i}{\mu} \right)
|
- \frac{\gamma_i}{\mu} \right)
|
||||||
@ -652,7 +652,7 @@ This representation can be slightly simplified by substituting
|
|||||||
$\boldsymbol{\lambda}_j = \mu \cdot \boldsymbol{u}_j \,\forall\,j\in\mathcal{J}$:%
|
$\boldsymbol{\lambda}_j = \mu \cdot \boldsymbol{u}_j \,\forall\,j\in\mathcal{J}$:%
|
||||||
%
|
%
|
||||||
\begin{alignat*}{3}
|
\begin{alignat*}{3}
|
||||||
\tilde{c}_i &\leftarrow \frac{1}{\left| N_v\left( i \right) \right|} \left(
|
\tilde{c}_i &\leftarrow \frac{1}{d_i} \left(
|
||||||
\sum_{j\in N_v\left( i \right) } \Big( \left( \boldsymbol{z}_j \right)_i
|
\sum_{j\in N_v\left( i \right) } \Big( \left( \boldsymbol{z}_j \right)_i
|
||||||
- \left( \boldsymbol{u}_j \right)_i \Big)
|
- \left( \boldsymbol{u}_j \right)_i \Big)
|
||||||
- \frac{\gamma_i}{\mu} \right)
|
- \frac{\gamma_i}{\mu} \right)
|
||||||
@ -692,7 +692,7 @@ while $\sum_{j\in\mathcal{J}} \lVert \boldsymbol{T}_j\tilde{\boldsymbol{c}} - \b
|
|||||||
- \boldsymbol{z}_j$
|
- \boldsymbol{z}_j$
|
||||||
end for
|
end for
|
||||||
for $i$ in $\mathcal{I}$ do
|
for $i$ in $\mathcal{I}$ do
|
||||||
$\tilde{c}_i \leftarrow \frac{1}{\left| N_v\left( i \right) \right|} \left(
|
$\tilde{c}_i \leftarrow \frac{1}{d_i} \left(
|
||||||
\sum_{j\in N_v\left( i \right) } \Big(
|
\sum_{j\in N_v\left( i \right) } \Big(
|
||||||
\left( \boldsymbol{z}_j \right)_i - \left( \boldsymbol{u}_j
|
\left( \boldsymbol{z}_j \right)_i - \left( \boldsymbol{u}_j
|
||||||
\right)_i
|
\right)_i
|
||||||
@ -724,7 +724,7 @@ The method chosen here is the one presented in \cite{lautern}.
|
|||||||
\section{Implementation Details}%
|
\section{Implementation Details}%
|
||||||
\label{sec:lp:Implementation Details}
|
\label{sec:lp:Implementation Details}
|
||||||
|
|
||||||
The development process used to implement this decoding algorithm is the same
|
The development process used to implement this decoding algorithm was the same
|
||||||
as outlined in section
|
as outlined in section
|
||||||
\ref{sec:prox:Implementation Details} for proximal decoding.
|
\ref{sec:prox:Implementation Details} for proximal decoding.
|
||||||
At first, an initial version was implemented in Python, before repeating the
|
At first, an initial version was implemented in Python, before repeating the
|
||||||
@ -752,11 +752,10 @@ Using this observation, the sum can be written as%
|
|||||||
- \boldsymbol{u}_j \right) \right)_i
|
- \boldsymbol{u}_j \right) \right)_i
|
||||||
.\end{align*}
|
.\end{align*}
|
||||||
Further noticing that the vectors
|
Further noticing that the vectors
|
||||||
$\boldsymbol{T}_j^\text{T}\left( \boldsymbol{z}_j - \boldsymbol{u}_j \right),
|
$\boldsymbol{T}_j^\text{T}\left( \boldsymbol{z}_j - \boldsymbol{u}_j \right)$
|
||||||
\hspace{1mm} j\in\mathcal{J} $
|
|
||||||
unrelated to \ac{VN} $i$ have $0$ as the $i$th component, the set of indices
|
unrelated to \ac{VN} $i$ have $0$ as the $i$th component, the set of indices
|
||||||
the summation takes place over can be extended to $\mathcal{J}$, allowing the
|
the summation takes place over can be extended to $\mathcal{J}$, allowing the
|
||||||
expression to be rewritten to%
|
expression to be rewritten as%
|
||||||
%
|
%
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
\sum_{j\in \mathcal{J}}\left( \boldsymbol{T}_j^\text{T} \left( \boldsymbol{z}_j
|
\sum_{j\in \mathcal{J}}\left( \boldsymbol{T}_j^\text{T} \left( \boldsymbol{z}_j
|
||||||
@ -771,12 +770,12 @@ Defining%
|
|||||||
\boldsymbol{D} := \begin{bmatrix}
|
\boldsymbol{D} := \begin{bmatrix}
|
||||||
d_1 \\
|
d_1 \\
|
||||||
\vdots \\
|
\vdots \\
|
||||||
d_m
|
d_n
|
||||||
\end{bmatrix}%
|
\end{bmatrix}%
|
||||||
\hspace{5mm}%
|
\hspace{5mm}%
|
||||||
\text{and}%
|
\text{and}%
|
||||||
\hspace{5mm}%
|
\hspace{5mm}%
|
||||||
\boldsymbol{M} := \sum_{j\in\mathcal{J}} \boldsymbol{T}_j^\text{T}
|
\boldsymbol{s} := \sum_{j\in\mathcal{J}} \boldsymbol{T}_j^\text{T}
|
||||||
\left( \boldsymbol{z}_j - \boldsymbol{u}_j \right)
|
\left( \boldsymbol{z}_j - \boldsymbol{u}_j \right)
|
||||||
\end{align*}%
|
\end{align*}%
|
||||||
%
|
%
|
||||||
@ -784,7 +783,7 @@ the $\tilde{\boldsymbol{c}}$ update can then be rewritten as%
|
|||||||
%
|
%
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
\tilde{\boldsymbol{c}} \leftarrow \boldsymbol{D}^{\circ -1} \circ
|
\tilde{\boldsymbol{c}} \leftarrow \boldsymbol{D}^{\circ -1} \circ
|
||||||
\left( \boldsymbol{M} - \frac{1}{\mu}\boldsymbol{\gamma} \right)
|
\left( \boldsymbol{s} - \frac{1}{\mu}\boldsymbol{\gamma} \right)
|
||||||
.\end{align*}
|
.\end{align*}
|
||||||
%
|
%
|
||||||
|
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user