Added proximal gradient moethod to theoretical background
This commit is contained in:
parent
fdc1ad5df8
commit
aa57b252bb
@ -272,14 +272,43 @@ desired \cite[Sec. 15.3]{ryan_lin_2009}.
|
||||
\section{Optimization Methods}
|
||||
\label{sec:theo:Optimization Methods}
|
||||
|
||||
TODO:
|
||||
\begin{itemize}
|
||||
\item Intro
|
||||
\item Proximal gradient method
|
||||
\end{itemize}
|
||||
|
||||
\vspace{5mm}
|
||||
\textit{Proximal algorithms} are algorithms for solving convex optimization
|
||||
problems, that rely on the use of \textit{proximal operators}.
|
||||
The proximal operator $\text{prox}_f : \mathbb{R}^n \rightarrow \mathbb{R}^n$
|
||||
of a function $f:\mathbb{R}^n \rightarrow \mathbb{R}$ is defined by
|
||||
\cite[Sec. 1.1]{proximal_algorithms}%
|
||||
%
|
||||
\begin{align*}
|
||||
\text{prox}_{\lambda f}\left( \boldsymbol{v} \right) = \argmin_{\boldsymbol{x}} \left(
|
||||
f\left( \boldsymbol{x} \right) + \frac{1}{2\lambda}\lVert \boldsymbol{x}
|
||||
- \boldsymbol{v} \rVert_2^2 \right)
|
||||
.\end{align*}
|
||||
%
|
||||
This operator computes a point that is a compromise between minimizing $f$
|
||||
and staying in the proximity of $\boldsymbol{v}$.
|
||||
The parameter $\lambda$ determines how heavily each term is weighed.
|
||||
The \textit{proximal gradient method} is an iterative optimization method used to
|
||||
solve problems of the form%
|
||||
%
|
||||
\begin{align*}
|
||||
\text{minimize}\hspace{5mm}f\left( \boldsymbol{x} \right) + g\left( \boldsymbol{x} \right)
|
||||
\end{align*}
|
||||
%
|
||||
that consists of two steps: minimizing $f$ with gradient descent
|
||||
and minimizing $g$ using the proximal operator
|
||||
\cite[Sec. 4.2]{proximal_algorithms}:%
|
||||
%
|
||||
\begin{align*}
|
||||
\boldsymbol{x} \leftarrow \boldsymbol{x} - \lambda \nabla f\left( \boldsymbol{x} \right) \\
|
||||
\boldsymbol{x} \leftarrow \text{prox}_{\lambda g} \left( \boldsymbol{x} \right)
|
||||
,\end{align*}
|
||||
%
|
||||
Since $g$ is minimized with the proximal operator and is thus not required
|
||||
to be differentiable, it can be used to encode the constraints of the problem.
|
||||
|
||||
A special case of convex optimization problems are \textit{linear programs}.
|
||||
These are problems where the objective function is linear and the constraints
|
||||
consist of linear equalities and inequalities.
|
||||
Generally, any linear program can be expressed in \textit{standard form}%
|
||||
\footnote{The inequality $\boldsymbol{x} \ge \boldsymbol{0}$ is to be
|
||||
interpreted componentwise.}
|
||||
|
||||
Loading…
Reference in New Issue
Block a user