Added first draft of admm application to lp decoding

This commit is contained in:
Andreas Tsouchlos 2023-03-17 00:24:47 +01:00
parent 81837b34f3
commit aa4ba79a1d

View File

@ -676,29 +676,168 @@ exponentially, it is a lot more tractable for practical applications.
The resulting formulation of the relaxed optimization problem becomes:%
%
\begin{align*}
\text{minimize }\hspace{2mm} &\sum_{i=1}^{n} \gamma_i \tilde{c}_i \\
\text{subject to }\hspace{2mm} &\boldsymbol{T}_j \tilde{\boldsymbol{c}} \in \mathcal{P}_{d_j},
\hspace{5mm}j\in\mathcal{J}
.\end{align*}%
\begin{align}
\begin{aligned}
\text{minimize }\hspace{2mm} &\sum_{i=1}^{n} \gamma_i \tilde{c}_i \\
\text{subject to }\hspace{2mm} &\boldsymbol{T}_j \tilde{\boldsymbol{c}} \in \mathcal{P}_{d_j}
\hspace{5mm}\forall j\in\mathcal{J}.
\end{aligned} \label{eq:lp:relaxed_formulation}
\end{align}%
\todo{Rewrite sum as dot product}
\todo{Space before $\forall$?}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{LP Decoding using ADMM}%
\label{sec:dec:LP Decoding using ADMM}
\begin{itemize}
\item Why ADMM?
\begin{itemize}
\item Distributed nature, making it a competitor to BP
(which can also be implemented in a distributed manner)
\cite[Sec. I]{original_admm}
\item Computational performance similar to BP has been demnonstrated
\cite[Sec. I]{original_admm}
\end{itemize}
\item Adaptive linear programming?
\item How ADMM is adapted to LP decoding
\end{itemize}
The \ac{LP} decoding formulation in section \ref{sec:dec:Decoding using Optimization Methods}
is a very general one that can be solved with a number of different optimization methods.
In this work \ac{ADMM} is examined, as its distributed nature allows for a very efficient
implementation.
\ac{LP} decoding using \ac{ADMM} can be regarded as a message
passing algorithm with two separate update steps that can be performed
simulatneously;
the resulting algorithm has a striking similarity to \ac{BP} and its computational
complexity has been demonstrated to compare favorably to \ac{BP} \cite{original_admm},
\cite{efficient_lp_dec_admm}.
The \ac{LP} decoding problem in (\ref{eq:lp:relaxed_formulation}) can be
slightly rewritten using the auxiliary variables
$\boldsymbol{z}_{1:m}$:%
%
\begin{align}
\begin{aligned}
\begin{array}{r}
\text{minimize }
\end{array}\hspace{0.5mm} & \boldsymbol{\gamma}^\text{T}\tilde{\boldsymbol{c}} \\
\begin{array}{r}
\text{subject to }\\
\phantom{te}
\end{array}\hspace{0.5mm} & \setlength{\arraycolsep}{1.4pt}
\begin{array}{rl}
\boldsymbol{T}_j\tilde{\boldsymbol{c}}
&= \boldsymbol{z}_j\\
\boldsymbol{z}_j
&\in \mathcal{P}_{d_j}
\end{array}
\hspace{5mm} \forall j\in\mathcal{J}.
\end{aligned}
\label{eq:lp:admm_reformulated}
\end{align}
%
In this form, the problem almost fits the \ac{ADMM} template described in section
\ref{sec:theo:Optimization Methods}, except for the fact that there are multiple equality
constraints $\boldsymbol{T}_j \tilde{\boldsymbol{c}} = \boldsymbol{z}_j$ and the
additional constraints $\boldsymbol{z}_j \in \mathcal{P}_{d_j} \, \forall\, j\in\mathcal{J}$.
\todo{$\forall$ in text?}
The multiple constraints can be addressed by introducing additional terms in the
augmented lagrangian:%
%
\begin{align*}
\mathcal{L}_{\mu}\left( \tilde{\boldsymbol{c}}, \boldsymbol{z}_{1:m},
\boldsymbol{\lambda}_{1:m} \right)
= \boldsymbol{\gamma}^\text{T}\tilde{\boldsymbol{c}}
+ \sum_{j\in\mathcal{J}} \boldsymbol{\lambda}^\text{T}_j
\left( \boldsymbol{T}_j\tilde{\boldsymbol{c}} - \boldsymbol{z}_j \right)
+ \frac{\mu}{2}\sum_{j\in\mathcal{J}}
\lVert \boldsymbol{T}_j\tilde{\boldsymbol{c}} - \boldsymbol{z}_j \rVert^2_2
.\end{align*}%
%
The additional constraints remain in the dual optimization problem:%
%
\begin{align*}
\text{maximize } \min_{\substack{\tilde{\boldsymbol{c}} \\
\boldsymbol{z}_j \in \mathcal{P}_{d_j}}}
\mathcal{L}_{\mu}\left( \tilde{\boldsymbol{c}}, \boldsymbol{z}_{1:m},
\boldsymbol{\lambda}_{1:m} \right)
.\end{align*}%
%
The steps to solve the dual problem then become:
%
\begin{alignat*}{3}
\tilde{\boldsymbol{c}} &\leftarrow \argmin_{\tilde{\boldsymbol{c}}} \mathcal{L}_{\mu} \left(
\tilde{\boldsymbol{c}}, \boldsymbol{z}_{1:m}, \boldsymbol{\lambda}_{1:m} \right) \\
\boldsymbol{z}_j &\leftarrow \argmin_{\boldsymbol{z}_j \in \mathcal{P}_{d_j}}
\mathcal{L}_{\mu} \left(
\tilde{\boldsymbol{c}}, \boldsymbol{z}_{1:m}, \boldsymbol{\lambda}_{1:m} \right)
\hspace{3mm} &&\forall j\in\mathcal{J} \\
\boldsymbol{\lambda}_j &\leftarrow \boldsymbol{\lambda}_j
+ \mu\left( \boldsymbol{T}_j\tilde{\boldsymbol{c}}
- \boldsymbol{z}_j \right)
\hspace{3mm} &&\forall j\in\mathcal{J}
.\end{alignat*}
%
Luckily, the additional constaints only affect the $\boldsymbol{z}_j$-update steps.
Furthermore, the $\boldsymbol{z}_j$-update steps can be shown to be equivalent to projections
onto the check polytopes $\mathcal{P}_{d_j}$ \cite[Sec. III. B.]{original_admm}
and the $\tilde{\boldsymbol{c}}$-update can be computed analytically \cite[Sec. III.]{lautern}:%
%
\begin{alignat*}{3}
\tilde{c}_i &\leftarrow \frac{1}{\left| N_v\left( i \right) \right|} \left(
\sum_{j\in N_v\left( i \right) } \Big( \left( \boldsymbol{\lambda}_j \right)_i
- \left( \boldsymbol{z}_j \right)_i \Big) - \frac{\gamma_i}{\mu} \right)
\hspace{3mm} && \forall i\in\mathcal{I} \\
\boldsymbol{z}_j &\leftarrow \Pi_{\mathcal{P}_{d_j}}\left(
\boldsymbol{T}_j\tilde{\boldsymbol{c}} + \boldsymbol{\lambda}_j \right)
\hspace{3mm} && \forall j\in\mathcal{J} \\
\boldsymbol{\lambda}_j &\leftarrow \boldsymbol{\lambda}_j
+ \mu\left( \boldsymbol{T}_j\tilde{\boldsymbol{c}}
- \boldsymbol{z}_j \right)
\hspace{3mm} && \forall j\in\mathcal{J}
.\end{alignat*}
%
One thing to note is that all of the $\boldsymbol{z}_j$-updates can be computed simultaneously,
as they are independent of one another.
The same is true for the updates of the individual components of $\tilde{\boldsymbol{c}}$.
The reason \ac{ADMM} is able to perform so well is due to the relocation of the constraints
$\boldsymbol{T}_j\tilde{\boldsymbol{c}}_j\in\mathcal{P}_{d_j}\,\forall\, j\in\mathcal{J}$
into the objective function itself.
The minimization of the new objective function can then take place simultaneously
with respect to all $\boldsymbol{z}_j, j\in\mathcal{J}$.
Effectively, all of the $\left|\mathcal{J}\right|$ parity constraints are
able to be handled at the same time.
This can also be understood by interpreting the decoding process as a message-passing
algorithm \cite[Sec. III. D.]{original_admm}, \cite[Sec. II. B.]{efficient_lp_dec_admm},
as is shown in figure \ref{fig:lp:message_passing}
\footnote{$\epsilon_{\text{pri}} > 0$ and $\epsilon_{\text{dual}} > 0$ are additional parameters
defining the tolerances for the stopping criteria of the algorithm.
$\boldsymbol{z}_j^\prime$ denotes the value of $\boldsymbol{z}_j$ in the previous iteration.}%
\todo{Move footnote to figure caption}%
.%
\todo{Explicitly specify sections?}%
%
\begin{figure}[H]
\centering
\begin{genericAlgorithm}[caption={}, label={}]
Initialize $\tilde{\boldsymbol{c}}, \boldsymbol{z}_{1:m}$ and $\boldsymbol{\lambda}_{1:m}$
while $\sum_{j\in\mathcal{J}} \lVert \boldsymbol{T}_j\tilde{\boldsymbol{c}} - \boldsymbol{z}_j \rVert_2 \ge \epsilon_{\text{pri}}$ or $\sum_{j\in\mathcal{J}} \lVert \boldsymbol{z}^\prime_j - \boldsymbol{z}_j \rVert_2 \ge \epsilon_{\text{dual}}$
Perform check update
...
Perform variable update
...
\end{genericAlgorithm}
\caption{\ac{LP} decoding using \ac{ADMM} interpreted as a message passing algorithm}
\label{fig:lp:message_passing}
\end{figure}%
%
\noindent The $\tilde{c}_i$-updates can be interpreted as a variable-node update step,
and the $\boldsymbol{z}_j$- and $\boldsymbol{\lambda}_j$-updates can be interpreted as
a check-node update step.
The updates for each variable- and check-node can be perfomed in parallel.
With this interpretation it becomes clear why \ac{LP} decoding using \ac{ADMM}
is able to achieve similar computational complexity to \ac{BP}.
The main computational effort in solving the linear program then amounts to
computing the projection operation $\Pi_{\mathcal{P}_{d_j}} \left( \cdot \right) $
onto each check polytope. Various different methods to perform this projection
have been proposed (e.g., in \cite{original_admm}, \cite{efficient_lp_dec_admm},
\cite{lautern}).
The method chosen here is the one presented in \cite{lautern}.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@ -746,7 +885,7 @@ as is often done, and has a rather unwieldy representation:%
f_{\tilde{\boldsymbol{X}}}\left( \tilde{\boldsymbol{x}} \right) =
\frac{1}{\left| \mathcal{C} \right| }
\sum_{\boldsymbol{c} \in \mathcal{C} }
\delta\left( \tilde{\boldsymbol{x}} - \left( -1 \right) ^{\boldsymbol{c}}\right)
\delta\big( \tilde{\boldsymbol{x}} - \left( -1 \right) ^{\boldsymbol{c}}\big)
\label{eq:prox:prior_pdf}
.\end{align}%
%
@ -758,7 +897,7 @@ the so-called \textit{code-constraint polynomial} is introduced as:%
h\left( \tilde{\boldsymbol{x}} \right) =
\underbrace{\sum_{i=1}^{n} \left( \tilde{x_i}^2-1 \right) ^2}_{\text{Bipolar constraint}}
+ \underbrace{\sum_{j=1}^{m} \left[
\left( \prod_{i\in N \left( j \right) } \tilde{x_i} \right)
\left( \prod_{i\in N_c \left( j \right) } \tilde{x_i} \right)
-1 \right] ^2}_{\text{Parity constraint}}%
.\end{align*}%
%
@ -795,6 +934,10 @@ $L \left( \boldsymbol{y} \mid \tilde{\boldsymbol{x}} \right) = -\ln\left(
+ \gamma h\left( \tilde{\boldsymbol{x}} \right)
\right)%
.\end{align*}%
\todo{\textbackslash left($\cdot$ \textbackslash right)\\
$\rightarrow$\\
\textbackslash big( $\cdot$ \textbackslash big)\\
?}%
%
Thus, with proximal decoding, the objective function
$g\left( \tilde{\boldsymbol{x}} \right)$ considered is%
@ -847,6 +990,7 @@ It is then immediately approximated with gradient-descent:%
\hspace{5mm} \gamma > 0, \text{ small}
.\end{align*}%
%
\todo{explicitly state $\nabla h$?}
The second step thus becomes%
%
\begin{align*}