Minor changes in appendix
This commit is contained in:
parent
0ba2120a21
commit
a0a13dbb2d
@ -89,15 +89,18 @@ problem (\ref{eq:app:sum_reformulated}) becomes%
|
|||||||
In this form, it fits the template for linearized \ac{ADMM}.
|
In this form, it fits the template for linearized \ac{ADMM}.
|
||||||
The iterative algorithm can then be expressed as%
|
The iterative algorithm can then be expressed as%
|
||||||
%
|
%
|
||||||
\begin{align*}
|
\begin{align}
|
||||||
\tilde{\boldsymbol{c}} &\leftarrow \textbf{prox}_{\mu f}\left( \tilde{\boldsymbol{c}}
|
\begin{aligned}
|
||||||
- \frac{\mu}{\lambda}\boldsymbol{T}^\text{T}\left( \boldsymbol{T}\tilde{\boldsymbol{c}}
|
\tilde{\boldsymbol{c}} &\leftarrow \textbf{prox}_{\mu f}\left( \tilde{\boldsymbol{c}}
|
||||||
- \boldsymbol{z} + \boldsymbol{u} \right) \right) \\
|
- \frac{\mu}{\lambda}\boldsymbol{T}^\text{T}\left( \boldsymbol{T}\tilde{\boldsymbol{c}}
|
||||||
\boldsymbol{z} &\leftarrow \textbf{prox}_{\lambda g}\left(\boldsymbol{T}\tilde{\boldsymbol{c}}
|
- \boldsymbol{z} + \boldsymbol{u} \right) \right) \\
|
||||||
+ \boldsymbol{u} \right) \\
|
\boldsymbol{z} &\leftarrow \textbf{prox}_{\lambda g}\left(\boldsymbol{T}\tilde{\boldsymbol{c}}
|
||||||
\boldsymbol{u} &\leftarrow \boldsymbol{u} + \boldsymbol{T} \tilde{\boldsymbol{c}}
|
+ \boldsymbol{u} \right) \\
|
||||||
- \boldsymbol{z}
|
\boldsymbol{u} &\leftarrow \boldsymbol{u} + \boldsymbol{T} \tilde{\boldsymbol{c}}
|
||||||
.\end{align*}
|
- \boldsymbol{z}.
|
||||||
|
\end{aligned}
|
||||||
|
\label{eq:app:admm_prox}
|
||||||
|
\end{align}
|
||||||
%
|
%
|
||||||
|
|
||||||
Using the definition of the proximal operator, the $\tilde{\boldsymbol{c}}$ update step
|
Using the definition of the proximal operator, the $\tilde{\boldsymbol{c}}$ update step
|
||||||
@ -134,12 +137,12 @@ can be rewritten to match the definition given in section \ref{sec:dec:LP Decodi
|
|||||||
\boldsymbol{u}_2 \\
|
\boldsymbol{u}_2 \\
|
||||||
\vdots \\
|
\vdots \\
|
||||||
\boldsymbol{u}_m
|
\boldsymbol{u}_m
|
||||||
\end{bmatrix} \right\Vert_2^2 \right)
|
\end{bmatrix} \right\Vert_2^2 \right),
|
||||||
\hspace{5mm}\boldsymbol{z}_j,\boldsymbol{u}_j \in \mathbb{F}_2^{d_j},
|
\hspace{5mm}\boldsymbol{z}_j,\boldsymbol{u}_j \in \mathbb{F}_2^{d_j},
|
||||||
\hspace{2mm} j\in\mathcal{J}\\
|
\hspace{2mm} j\in\mathcal{J}\\
|
||||||
&= \argmin_{\tilde{\boldsymbol{c}}} \left( \boldsymbol{\gamma}^\text{T} \tilde{\boldsymbol{c}}
|
&= \argmin_{\tilde{\boldsymbol{c}}} \left( \boldsymbol{\gamma}^\text{T} \tilde{\boldsymbol{c}}
|
||||||
- \frac{\mu}{2} \sum_{j \in J} \left\Vert \boldsymbol{T}_j \tilde{\boldsymbol{c}}
|
- \frac{\mu}{2} \sum_{j \in J} \left\Vert \boldsymbol{T}_j \tilde{\boldsymbol{c}}
|
||||||
- \boldsymbol{z}_j + \boldsymbol{u}_j \right\Vert_2^2 \right)
|
- \boldsymbol{z}_j + \boldsymbol{u}_j \right\Vert_2^2 \right)
|
||||||
.\end{align*}
|
.\end{align*}
|
||||||
%
|
%
|
||||||
Step (a) can be justified by observing that multiplication with $\boldsymbol{T}^\text{T}$
|
Step (a) can be justified by observing that multiplication with $\boldsymbol{T}^\text{T}$
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user