diff --git a/latex/thesis/chapters/decoding_techniques.tex b/latex/thesis/chapters/decoding_techniques.tex index 9fc48f7..803414c 100644 --- a/latex/thesis/chapters/decoding_techniques.tex +++ b/latex/thesis/chapters/decoding_techniques.tex @@ -259,7 +259,8 @@ binary vectors of length $d_j$ with even parity% parity-check $j$, but extended to the continuous domain.}% and $\boldsymbol{T}_j$ is the \textit{transfer matrix}, which selects the neighboring variable nodes -of check node $j$ (i.e., the relevant components of $\boldsymbol{c}$ for parity-check $j$). +of check node $j$ (i.e., the relevant components of $\tilde{\boldsymbol{c}}$ +for parity-check $j$). For example, if the $j$th row of the parity-check matrix $\boldsymbol{H}$ was $\boldsymbol{h}_j = \begin{bmatrix} 0 & 1 & 0 & 1 & 0 & 1 & 0 \end{bmatrix}$, @@ -676,7 +677,7 @@ correspond to the so-called \textit{pseudo-codewords} introduced in However, since for \ac{LDPC} codes $\overline{Q}$ scales linearly with $n$ instead of exponentially, it is a lot more tractable for practical applications. -The resulting formulation of the relaxed optimization problem becomes:% +The resulting formulation of the relaxed optimization problem becomes% % \begin{align} \begin{aligned} @@ -805,7 +806,7 @@ $\boldsymbol{\lambda}_j = \mu \cdot \boldsymbol{u}_j \,\forall\,j\in\mathcal{J}$ \tilde{c}_i &\leftarrow \frac{1}{\left| N_v\left( i \right) \right|} \left( \sum_{j\in N_v\left( i \right) } \Big( \left( \boldsymbol{z}_j \right)_i - \left( \boldsymbol{u}_j \right)_i \Big) - - \gamma_i \right) + - \frac{\gamma_i}{\mu} \right) \hspace{3mm} && \forall i\in\mathcal{I} \\ \boldsymbol{z}_j &\leftarrow \Pi_{\mathcal{P}_{d_j}}\left( \boldsymbol{T}_j\tilde{\boldsymbol{c}} + \boldsymbol{u}_j \right) @@ -898,8 +899,7 @@ In order to derive the objective function, the authors begin with the material difference in the meaning of the rule. The only change is that what previously were \acp{PMF} now have to be expressed in terms of \acp{PDF}.} -over $\boldsymbol{x}$ -:% +over $\boldsymbol{x}$:% % \begin{align} \hat{\boldsymbol{x}} = \argmax_{\tilde{\boldsymbol{x}} \in \mathbb{R}^{n}} @@ -1015,7 +1015,7 @@ descent:% % For the second step, minimizing the scaled code-constraint polynomial, the proximal gradient method is used and the \textit{proximal operator} of -$\gamma h\left( \boldsymbol{x} \right) $ has to be computed. +$\gamma h\left( \tilde{\boldsymbol{x}} \right) $ has to be computed. It is then immediately approximated with gradient-descent:% % \begin{align*} @@ -1037,7 +1037,7 @@ The second step thus becomes% While the approximation of the prior \ac{PDF} made in equation (\ref{eq:prox:prior_pdf_approx}) theoretically becomes better with larger $\gamma$, the constraint that $\gamma$ be small is important, -as it keeps the effect of $h\left( \boldsymbol{x} \right) $ on the landscape +as it keeps the effect of $h\left( \tilde{\boldsymbol{x}} \right) $ on the landscape of the objective function small. Otherwise, unwanted stationary points, including local minima, are introduced. The authors say that ``in practice, the value of $\gamma$ should be adjusted @@ -1079,7 +1079,7 @@ it suffices to consider only proportionality instead of equality.}% &\propto \tilde{\boldsymbol{x}} - \boldsymbol{y} ,\end{align*}% % -allowing equation \ref{eq:prox:step_log_likelihood} to be rewritten as% +allowing equation (\ref{eq:prox:step_log_likelihood}) to be rewritten as% % \begin{align*} \boldsymbol{r} \leftarrow \boldsymbol{s} diff --git a/latex/thesis/chapters/theoretical_background.tex b/latex/thesis/chapters/theoretical_background.tex index aa6497d..245fd54 100644 --- a/latex/thesis/chapters/theoretical_background.tex +++ b/latex/thesis/chapters/theoretical_background.tex @@ -203,7 +203,7 @@ by computing \cite[Sec. 2.1]{admm_distr_stats}% % The dual problem can then be solved iteratively using \textit{dual ascent}: starting with an -initial estimate of $\boldsymbol{\lambda}$, calculate an estimate for $\boldsymbol{x}$ +initial estimate for $\boldsymbol{\lambda}$, calculate an estimate for $\boldsymbol{x}$ using equation (\ref{eq:theo:admm_obtain_primal}); then, update $\boldsymbol{\lambda}$ using gradient descent \cite[Sec. 2.1]{admm_distr_stats}:% % @@ -215,7 +215,7 @@ using gradient descent \cite[Sec. 2.1]{admm_distr_stats}:% \hspace{5mm} \alpha > 0 .\end{align*} % -The algorithm can be improved by observing that when hen the objective function is separable in $\boldsymbol{x}$, the lagrangian is as well: +The algorithm can be improved by observing that when the objective function is separable in $\boldsymbol{x}$, the lagrangian is as well: % \begin{align*} \text{minimize }\hspace{5mm} & \sum_{i=1}^{N} g_i\left( \boldsymbol{x}_i \right) \\ @@ -246,7 +246,7 @@ This modified version of dual ascent is called \textit{dual decomposition}: The \ac{ADMM} works the same way as dual decomposition. It only differs in the use of an \textit{augmented lagrangian} -$\mathcal{L}_\mu\left( \boldsymbol{x}_{[1:N]} \boldsymbol{\lambda} \right)$ +$\mathcal{L}_\mu\left( \boldsymbol{x}_{[1:N]}, \boldsymbol{\lambda} \right)$ in order to robustify the convergence properties. The augmented lagrangian extends the ordinary one with an additional penalty term with the penaly parameter $\mu$: