Finished LP Relaxation slides

This commit is contained in:
Andreas Tsouchlos 2023-04-12 12:31:23 +02:00
parent 6dcc43273d
commit 99008e29e8
2 changed files with 112 additions and 123 deletions

View File

@ -27,6 +27,7 @@
\usetikzlibrary{spy}
\tikzexternalize[prefix=build/]
\captionsetup[sub]{font=small}
\DeclareMathOperator*{\argmax}{arg\,max}
\DeclareMathOperator*{\argmin}{arg\,min}

View File

@ -129,118 +129,58 @@ return $\boldsymbol{\hat{c}}$
\begin{frame}[t]
\frametitle{LP Decoding \cite{feldman_paper}}
\begin{minipage}[c]{0.6\linewidth}
\begin{itemize}
\item Codeword polytope:
\begin{align*}
\text{poly}\left( \mathcal{C} \right) =
\left\{
\sum_{\boldsymbol{c}\in\mathcal{C}}\alpha_{\boldsymbol{c}}
\boldsymbol{c} : \alpha_{\boldsymbol{c}} \ge 0,
\sum_{\boldsymbol{c}\in\mathcal{C}}\alpha_{\boldsymbol{c}} = 1
\right\},
\hspace{5mm} \alpha_{\boldsymbol{c}} \in \mathbb{R}_{\ge 0}
\end{align*}
\item Cost function:
\begin{align*}
\boldsymbol{\gamma}^{T} \tilde{\boldsymbol{c}} = \sum_{i=1}^{n}
\gamma_i \tilde{c}_i,
\hspace{5mm}\gamma_i = \ln\left(
\frac{p_{Y_i \mid C_i}\left( y_i | c_i = 0 \right) }
{p_{Y_i \mid C_i}\left(y_i | c_i=1 \right) } \right)
\end{align*}
\item Exact LP formulation of ML decoding:
\begin{align*}
&\text{minimize } \boldsymbol{\gamma}^\text{T} \tilde{\boldsymbol{c}}\\
&\text{subject to } \tilde{\boldsymbol{c}}\in\text{poly}
\left( \mathcal{C} \right)
\end{align*}
\end{itemize}
\end{minipage}%
\hfill%
\begin{minipage}[c]{0.4\linewidth}
\begin{figure}[H]
\centering
\tikzstyle{codeword} = [color=KITblue, fill=KITblue,
draw, circle, inner sep=0pt, minimum size=4pt]
\tdplotsetmaincoords{60}{245}
\begin{tikzpicture}[scale=1, transform shape, tdplot_main_coords]
% Cube
\draw[dashed] (0, 0, 0) -- (2, 0, 0);
\draw[dashed] (2, 0, 0) -- (2, 0, 2);
\draw[] (2, 0, 2) -- (0, 0, 2);
\draw[] (0, 0, 2) -- (0, 0, 0);
\draw[] (0, 2, 0) -- (2, 2, 0);
\draw[] (2, 2, 0) -- (2, 2, 2);
\draw[] (2, 2, 2) -- (0, 2, 2);
\draw[] (0, 2, 2) -- (0, 2, 0);
\draw[] (0, 0, 0) -- (0, 2, 0);
\draw[dashed] (2, 0, 0) -- (2, 2, 0);
\draw[] (2, 0, 2) -- (2, 2, 2);
\draw[] (0, 0, 2) -- (0, 2, 2);
% Codeword Polytope
\draw[line width=1pt, color=KITblue] (0, 0, 0) -- (2, 0, 2);
\draw[line width=1pt, color=KITblue] (0, 0, 0) -- (2, 2, 0);
\draw[line width=1pt, color=KITblue] (0, 0, 0) -- (0, 2, 2);
\draw[line width=1pt, color=KITblue] (2, 0, 2) -- (2, 2, 0);
\draw[line width=1pt, color=KITblue] (2, 0, 2) -- (0, 2, 2);
\draw[line width=1pt, color=KITblue] (0, 2, 2) -- (2, 2, 0);
% Polytope Annotations
\node[codeword] (c000) at (0, 0, 0) {};% {$\left( 0, 0, 0 \right) $};
\node[codeword] (c101) at (2, 0, 2) {};% {$\left( 1, 0, 1 \right) $};
\node[codeword] (c110) at (2, 2, 0) {};% {$\left( 1, 1, 0 \right) $};
\node[codeword] (c011) at (0, 2, 2) {};% {$\left( 0, 1, 1 \right) $};
\node[color=KITblue, right=0cm of c000] {$\left( 0, 0, 0 \right) $};
\node[color=KITblue, above=0cm of c101] {$\left( 1, 0, 1 \right) $};
\node[color=KITblue, left=0cm of c110] {$\left( 1, 1, 0 \right) $};
\node[color=KITblue, left=0cm of c011] {$\left( 0, 1, 1 \right) $};
% f
\node[color=KITgreen, fill=KITgreen,
draw, circle, inner sep=0pt, minimum size=4pt] (f) at (0.7, 0.7, 1) {};
\node[color=KITgreen, right=0cm of f] {$\tilde{\boldsymbol{c}}$};
\end{tikzpicture}
\caption{$\text{poly}\left( \mathcal{C} \right)$ for single parity-check code with
$n=3$}
\end{figure}
\end{minipage}
\begin{itemize}
\item General reformulation of ML decoding as a linear program (LP)
% \item Codeword polytope:
% \begin{align*}
% \text{poly}\left( \mathcal{C} \right) =
% \left\{
% \sum_{\boldsymbol{c}\in\mathcal{C}}\alpha_{\boldsymbol{c}}
% \boldsymbol{c} : \alpha_{\boldsymbol{c}} \ge 0,
% \sum_{\boldsymbol{c}\in\mathcal{C}}\alpha_{\boldsymbol{c}} = 1
% \right\},
% \hspace{5mm} \alpha_{\boldsymbol{c}} \in \mathbb{R}_{\ge 0}
% \end{align*}
\item Cost function:
\begin{align*}
\boldsymbol{\gamma}^{T} \boldsymbol{c} = \sum_{i=1}^{n}
\gamma_i c_i,
\hspace{5mm}\gamma_i = \ln\left(
\frac{p_{Y_i \mid C_i}\left( y_i | c_i = 0 \right) }
{p_{Y_i \mid C_i}\left(y_i | c_i=1 \right) } \right)
\end{align*}
\item Exact \textit{integer linear programming} (ILP) formulation of ML decoding:
\begin{align*}
&\text{minimize } \boldsymbol{\gamma}^\text{T} \tilde{\boldsymbol{c}}\\
&\text{subject to } \boldsymbol{c}\in \mathcal{C}
\end{align*}
\item Goal: relaxation of constraints to make a practical solution to the problem feasible
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[t]
\frametitle{LP Relaxation}
\frametitle{LP Relaxation: Motivation}
\vspace*{-1cm}
\begin{gather*}
\boldsymbol{G} =
\begin{bmatrix}
0 & 1 & 1
\end{bmatrix} \hspace{1cm}
% \boldsymbol{G} =
% \begin{bmatrix}
% 0 & 1 & 1
% \end{bmatrix} \hspace{1cm}
\boldsymbol{H} =
\begin{bmatrix}
1 & 1 & 1\\
0 & 1 & 1
\end{bmatrix} \\[1em]
\end{bmatrix} \hspace{1cm}
% \\[1em]
\mathcal{C} = \left\{ \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix},
\begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \right\}
\end{gather*}%
\vspace*{-1cm}
\vspace*{-5mm}
\begin{figure}[H]
\centering
@ -356,12 +296,23 @@ return $\boldsymbol{\hat{c}}$
\end{subfigure}
\end{figure}
% \vspace*{-5mm}
\begin{align*}
\text{poly}\left( \mathcal{C} \right) =
\left\{
\sum_{\boldsymbol{c}\in\mathcal{C}}\alpha_{\boldsymbol{c}}
\boldsymbol{c} : \alpha_{\boldsymbol{c}} \ge 0,
\sum_{\boldsymbol{c}\in\mathcal{C}}\alpha_{\boldsymbol{c}} = 1
\right\},
\hspace{5mm} \alpha_{\boldsymbol{c}} \in \mathbb{R}_{\ge 0}
\end{align*}
\end{frame}
\begin{frame}[t]
\frametitle{LP Relaxation}
\vspace*{-8mm}
\vspace*{-1cm}
\begin{figure}[H]
\centering
@ -501,7 +452,7 @@ return $\boldsymbol{\hat{c}}$
\end{tikzpicture}
\end{minipage}
\caption{Local codeword polytopes of the check nodes}
\caption{Local codeword polytopes $\mathcal{P}_{d_j}$ of the check nodes}
\label{fig:lp:poly:local}
\end{subfigure}%
\begin{subfigure}[c]{0.18\textwidth}
@ -520,6 +471,7 @@ return $\boldsymbol{\hat{c}}$
\begin{subfigure}[c]{0.32\textwidth}
\centering
\vspace*{1.5cm}
\tikzstyle{codeword} = [color=KITblue, fill=KITblue,
draw, circle, inner sep=0pt, minimum size=4pt]
\tikzstyle{pseudocodeword} = [color=KITred, fill=KITred,
@ -575,6 +527,13 @@ return $\boldsymbol{\hat{c}}$
{$\left( 1, \frac{1}{2}, \frac{1}{2} \right) $};
\end{tikzpicture}
\vspace*{-5mm}
\begin{align*}
\boldsymbol{T}_j\tilde{\boldsymbol{c}} \in \mathcal{P}_{d_j}, \hspace{2mm}
\forall j\in \mathcal{J}
\end{align*}
\caption{Relaxed codeword polytope $\overline{Q}$}
\label{fig:lp:poly:relaxed}
\end{subfigure}
@ -585,10 +544,12 @@ return $\boldsymbol{\hat{c}}$
\begin{frame}[t]
\frametitle{LP Relaxation}
\vspace{-5mm}
\begin{figure}[H]
\centering
\begin{subfigure}[c]{0.2\textwidth}
\begin{subfigure}[t]{0.3\textwidth}
\centering
\tikzstyle{codeword} = [color=KITblue, fill=KITblue,
draw, circle, inner sep=0pt, minimum size=4pt]
@ -629,20 +590,17 @@ return $\boldsymbol{\hat{c}}$
\node[color=KITblue, below=0cm of c000] {$\left( 0, 0, 0 \right) $};
\node[color=KITblue, above=0cm of c011] {$\left( 0, 1, 1 \right) $};
\node at (3, -2) {$\mathcal{C}$};
\end{tikzpicture}
\end{subfigure}%
\begin{subfigure}[c]{0.18\textwidth}
\centering
\begin{tikzpicture}
\node (relaxation) at (0, 0) {Relaxation};
\draw (-1.5, 0) -- (relaxation);
\draw[->] (relaxation) -- (1.5, 0);
\end{tikzpicture}
\begin{align*}
\text{minimize}\hspace{2mm} &\boldsymbol{\gamma}^\text{T} \boldsymbol{c} \\
\text{subject to}\hspace{2mm} &\boldsymbol{c} \in \mathcal{C}
\end{align*}
\caption{\textit{Integer linear program} (ILP)}
\end{subfigure}%
\begin{subfigure}[c]{0.2\textwidth}
\hfill%
\begin{subfigure}[t]{0.3\textwidth}
\centering
\tikzstyle{codeword} = [color=KITblue, fill=KITblue,
draw, circle, inner sep=0pt, minimum size=4pt]
@ -687,20 +645,18 @@ return $\boldsymbol{\hat{c}}$
\node[color=KITblue, below=0cm of c000] {$\left( 0, 0, 0 \right) $};
\node[color=KITblue, above=0cm of c011] {$\left( 0, 1, 1 \right) $};
\node at (3, -2) {$\text{poly}\left(\mathcal{C}\right)$};
\end{tikzpicture}
\end{subfigure}%
\begin{subfigure}[c]{0.18\textwidth}
\centering
\begin{tikzpicture}
\node (relaxation) at (0, 0) {Relaxation};
\draw (-1.5, 0) -- (relaxation);
\draw[->] (relaxation) -- (1.5, 0);
\end{tikzpicture}
\begin{align*}
\text{minimize}\hspace{2mm} &\boldsymbol{\gamma}^\text{T} \boldsymbol{c} \\
\text{subject to}\hspace{2mm} &\tilde{\boldsymbol{c}} \in
\text{poly}\left( \mathcal{C} \right) &\
\end{align*}
\caption{Motivation}
\end{subfigure}%
\begin{subfigure}[c]{0.2\textwidth}
\hfill%
\begin{subfigure}[t]{0.3\textwidth}
\centering
\tikzstyle{codeword} = [color=KITblue, fill=KITblue,
draw, circle, inner sep=0pt, minimum size=4pt]
@ -754,12 +710,44 @@ return $\boldsymbol{\hat{c}}$
\node[color=KITblue, above=0cm of c011] {$\left( 0, 1, 1 \right) $};
\node[color=KITred, right=0cm of cpseudo]
{$\left( 1, \frac{1}{2}, \frac{1}{2} \right) $};
\end{tikzpicture}
\node at (3, -2) {$\overline{Q}$};
\begin{align*}
\text{minimize}\hspace{2mm} &\boldsymbol{\gamma}^\text{T} \boldsymbol{c} \\
\text{subject to}\hspace{2mm} &
\boldsymbol{T}_j\tilde{\boldsymbol{c}} \in \mathcal{P}_{d_j}, \hspace{2mm}
\forall j\in \mathcal{J}
\end{align*}
\caption{\textit{Linear code linear program} (LCLP)}
\end{subfigure}%
\end{figure}
\vspace*{-5.75cm}
\begin{figure}[H]
\centering
\begin{subfigure}[t]{0.36\textwidth}
\centering
\begin{tikzpicture}
\node (relaxation) at (0, 0) {Relaxation};
\draw[->] (-1, -0.25) -- (1, -0.25);
% \draw (-1.5, 0) -- (relaxation);
% \draw[->] (relaxation) -- (1.5, 0);
\end{tikzpicture}
\end{subfigure}%
\begin{subfigure}[t]{0.31\textwidth}
\centering
\begin{tikzpicture}
\node (relaxation) at (0, 0) {Relaxation};
\draw[->] (-1, -0.25) -- (1, -0.25);
% \draw (-1.5, 0) -- (relaxation);
% \draw[->] (relaxation) -- (1.5, 0);
\end{tikzpicture}
\end{subfigure}%
\end{figure}
\end{frame}