diff --git a/latex/thesis/bibliography.bib b/latex/thesis/bibliography.bib index acb6e74..6b43fa8 100644 --- a/latex/thesis/bibliography.bib +++ b/latex/thesis/bibliography.bib @@ -76,7 +76,7 @@ @mastersthesis{yanxia_lu_thesis, author = {Lu, Yanxia}, title = {Realization of Channel Decoding Using Optimization Techniques}, - year = {2023}, + year = {2022}, type = {Bachelor's Thesis}, institution = {KIT}, } diff --git a/latex/thesis/chapters/comparison.tex b/latex/thesis/chapters/comparison.tex index 571e189..5a5b4aa 100644 --- a/latex/thesis/chapters/comparison.tex +++ b/latex/thesis/chapters/comparison.tex @@ -87,7 +87,7 @@ return $\boldsymbol{s}$ + \underbrace{\sum\nolimits_{j\in\mathcal{J}} g_j\left( \boldsymbol{T}_j\tilde{\boldsymbol{c}} \right) } _{\text{Constraints}} \\ \text{subject to}\hspace{5mm} & - \tilde{\boldsymbol{c}} \in \mathbb{R}^n + \tilde{\boldsymbol{c}} \in \left[ 0, 1 \right]^n \end{align*} \begin{genericAlgorithm}[caption={}, label={}, diff --git a/latex/thesis/chapters/theoretical_background.tex b/latex/thesis/chapters/theoretical_background.tex index d6748e8..4ba7197 100644 --- a/latex/thesis/chapters/theoretical_background.tex +++ b/latex/thesis/chapters/theoretical_background.tex @@ -21,7 +21,7 @@ For example:% % \begin{align*} x \in \left\{ -1, 1 \right\} &\to \tilde{x} \in \mathbb{R}\\ - c \in \mathbb{F}_2 &\to \tilde{c} \in \left[ 0, 1 \right] + c \in \mathbb{F}_2 &\to \tilde{c} \in \left[ 0, 1 \right] \subseteq \mathbb{R} .\end{align*} % Additionally, a shorthand notation will be used to denote series of indices and series @@ -29,9 +29,10 @@ of indexed variables:% % \begin{align*} \left[ m:n \right] &:= \left\{ m, m+1, \ldots, n-1, n \right\}, - \hspace{5mm} m,n\in\mathbb{Z}\\ + \hspace{5mm} m < n, \hspace{2mm} m,n\in\mathbb{Z}\\ x_{\left[ m:n \right] } &:= \left\{ x_m, x_{m+1}, \ldots, x_{n-1}, x_n \right\} .\end{align*} +\todo{Not really slicing. How should it be denoted?} % In order to designate elemen-twise operations, in particular the \textit{Hadamard product} and the \textit{Hadamard power}, the operator $\circ$ will be used:% @@ -50,16 +51,17 @@ and the \textit{Hadamard power}, the operator $\circ$ will be used:% \section{Preliminaries: Channel Model and Modulation} \label{sec:theo:Preliminaries: Channel Model and Modulation} -In order to transmit a bit-word $\boldsymbol{c}$ of length $n$ over a channel, -it has to be mapped onto a symbol $\boldsymbol{x}$ that can be physically -transmitted. +In order to transmit a bit-word $\boldsymbol{c} \in \mathbb{F}_2^n$ of length +$n$ over a channel, it has to be mapped onto a symbol +$\boldsymbol{x} \in \mathbb{R}^n$ that can be physically transmitted. This is known as modulation. The modulation scheme chosen here is \ac{BPSK}:% % \begin{align*} - \boldsymbol{x} = \left( -1 \right)^{\boldsymbol{c}} + \boldsymbol{x} = 1 - 2\boldsymbol{c} .\end{align*} % -The symbol that reaches the receiver, $\boldsymbol{y}$, is distorted by the channel. +The transmitted symbol is distorted by the channel and denoted by +$\boldsymbol{y} \in \mathbb{R}^n$. This distortion is described by the channel model, which in the context of this thesis is chosen to be \ac{AWGN}:% % @@ -87,7 +89,7 @@ of the channel \cite[Sec. II.B.]{mackay_rediscovery} while having a structure that allows for very efficient decoding. The lengths of the data words and codewords are denoted by $k\in\mathbb{N}$ -and $n\in\mathbb{N}$, respectively. +and $n\in\mathbb{N}$, respectively, with $k \le n$. The set of codewords $\mathcal{C} \subset \mathbb{F}_2^n$ of a binary linear code can be represented using the \textit{parity-check matrix} $\boldsymbol{H} \in \mathbb{F}_2^{m\times n}$, where $m$ represents @@ -103,14 +105,14 @@ $\boldsymbol{c} \in \mathbb{F}_2^n$ using the \textit{generator matrix} $\boldsymbol{G} \in \mathbb{F}_2^{k\times n}$:% % \begin{align*} - \boldsymbol{c} = \boldsymbol{u}^\text{T}\boldsymbol{G} + \boldsymbol{c} = \boldsymbol{u}\boldsymbol{G} .\end{align*} % After obtaining a codeword from a data word, it is transmitted over a channel as described in section \ref{sec:theo:Preliminaries: Channel Model and Modulation}. The received signal $\boldsymbol{y}$ is then decoded to obtain -an estimate of the transmitted codeword, $\hat{\boldsymbol{c}}$. +an estimate of the transmitted codeword, denoted as $\hat{\boldsymbol{c}}$. Finally, the encoding procedure is reversed and an estimate of the originally sent data word, $\hat{\boldsymbol{u}}$, is produced. The methods examined in this work are all based on \textit{soft-decision} decoding, @@ -170,7 +172,17 @@ criterion:% \right) .\end{align*}% % - +The \ac{MAP}- and \ac{ML}-criteria are closely connected through +\textit{Bayes' theorem}:% +% +\begin{align*} + \argmax_{c\in\mathcal{C}} p_{\boldsymbol{C} \mid \boldsymbol{Y}} + \left( \boldsymbol{c} \mid \boldsymbol{y} \right) + = TODO +.\end{align*} +% +This has the consequence that if the probability \ldots, the two criteria are +equivalent. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @@ -472,8 +484,8 @@ and minimizing $g$ using the proximal operator \cite[Sec. 4.2]{proximal_algorithms}:% % \begin{align*} - \boldsymbol{x} \leftarrow \boldsymbol{x} - \lambda \nabla f\left( \boldsymbol{x} \right) \\ - \boldsymbol{x} \leftarrow \textbf{prox}_{\lambda g} \left( \boldsymbol{x} \right) + \boldsymbol{x} &\leftarrow \boldsymbol{x} - \lambda \nabla f\left( \boldsymbol{x} \right) \\ + \boldsymbol{x} &\leftarrow \textbf{prox}_{\lambda g} \left( \boldsymbol{x} \right) ,\end{align*} % Since $g$ is minimized with the proximal operator and is thus not required