diff --git a/latex/thesis/chapters/decoding_techniques.tex b/latex/thesis/chapters/decoding_techniques.tex index 7014eeb..cfc4788 100644 --- a/latex/thesis/chapters/decoding_techniques.tex +++ b/latex/thesis/chapters/decoding_techniques.tex @@ -578,7 +578,7 @@ The resulting formulation of the relaxed optimization problem is the following:% \end{subfigure} \caption{Visualization of the codeword polytope and the relaxed codeword - polytope for an example code} + polytope} \label{fig:dec:poly} \end{figure}% % @@ -651,7 +651,7 @@ the so-called \textit{code-constraint polynomial} is introduced:% .\end{align*}% % The intention of this function is to provide a way to penalize vectors far -from a codeword and favor those close to a codeword. +from a codeword and favor those close to one. In order to achieve this, the polynomial is composed of two parts: one term representing the bipolar constraint, providing for a discrete solution of the continuous optimization problem, and one term representing the parity @@ -781,7 +781,7 @@ it suffices to consider only proportionality instead of equality.}% &\propto \boldsymbol{x} - \boldsymbol{y} ,\end{align*}% % -Allowing equation \ref{eq:prox:step_log_likelihood} to be rewritten as% +allowing equation \ref{eq:prox:step_log_likelihood} to be rewritten as% % \begin{align*} \boldsymbol{r} \leftarrow \boldsymbol{s} @@ -823,6 +823,6 @@ return $\boldsymbol{\hat{c}}$ \end{genericAlgorithm} - \caption{Proximal decoding algorithm} + \caption{Proximal decoding algorithm for an \ac{AWGN} channel} \label{fig:prox:alg} \end{figure}