From 81837b34f3da7cb452fa3aee4f6bc0fa42b5fe94 Mon Sep 17 00:00:00 2001 From: Andreas Tsouchlos Date: Fri, 17 Mar 2023 00:23:50 +0100 Subject: [PATCH] Added dual ascent; Minor changes --- .../chapters/theoretical_background.tex | 32 +++++++++++++++---- 1 file changed, 26 insertions(+), 6 deletions(-) diff --git a/latex/thesis/chapters/theoretical_background.tex b/latex/thesis/chapters/theoretical_background.tex index 2a3a2a6..e1f0c3f 100644 --- a/latex/thesis/chapters/theoretical_background.tex +++ b/latex/thesis/chapters/theoretical_background.tex @@ -101,11 +101,15 @@ Lastly, the optimization methods utilized are described. \section{Optimization Methods} \label{sec:theo:Optimization Methods} +\begin{itemize} + \item \ac{ADMM} + \item proximal decoding +\end{itemize} + Generally, any linear program \todo{Acronym} can be expressed in \textit{standard form}% -\todo{Citation needed}% \footnote{The inequality $\boldsymbol{x} \ge \boldsymbol{0}$ is to be -interpreted componentwise.}% -:% +interpreted componentwise.} +\cite[Sec. 1.1]{intro_to_lin_opt_book}:% % \begin{alignat}{3} \begin{alignedat}{3} @@ -116,7 +120,9 @@ interpreted componentwise.}% \label{eq:theo:admm_standard} \end{alignat}% % -A technique called \textit{lagrangian relaxation} can then be applied - some of the +A technique called \textit{lagrangian relaxation}% +\todo{Citation needed}% +can then be applied - some of the constraints are moved into the objective function itself and the weights $\boldsymbol{\lambda}$ are introduced. A new, relaxed problem is formulated: % @@ -172,8 +178,9 @@ bound actually reaches the value itself: .\end{align*} % In other words, with the optimal choice of $\boldsymbol{\lambda}$, -the optimal objectives of the problems (\ref{eq:theo:admm_standard}) -and (\ref{eq:theo:admm_relaxed}) have the same value. +the optimal objectives of the problems (\ref{eq:theo:admm_relaxed}) +and (\ref{eq:theo:admm_standard}) have the same value. + Thus, we can define the \textit{dual problem} as the search for the tightest lower bound:% % \begin{align} @@ -194,4 +201,17 @@ by computing \cite[Sec. 2.1]{admm_distr_stats}% \boldsymbol{\lambda}_{\text{opt}} \right) \label{eq:theo:admm_obtain_primal} .\end{align} +% +The dual problem can then be solved using \textit{dual ascent}: starting with an +initial estimate of $\boldsymbol{\lambda}$, calculate an estimate for $\boldsymbol{x}$ +using equation (\ref{eq:theo:admm_obtain_primal}); then, update $\boldsymbol{\lambda}$ +using gradient descent \cite[Sec. 2.1]{admm_distr_stats}:% +% +\begin{align*} + \boldsymbol{x} &\leftarrow \argmin_{\boldsymbol{x}} \mathcal{L}\left( + \boldsymbol{x}, \boldsymbol{b}, \boldsymbol{\lambda} \right) \\ + \boldsymbol{\lambda} &\leftarrow \boldsymbol{\lambda} + + \alpha\left( \boldsymbol{A}\boldsymbol{x} - \boldsymbol{b} \right), + \hspace{5mm} \alpha > 0 +.\end{align*}