Added proximal decoding algorithm
This commit is contained in:
parent
90236d995d
commit
7f74df4af1
@ -73,6 +73,34 @@
|
||||
}
|
||||
|
||||
|
||||
\DeclareCaptionLabelFormat{algocaption}{Algorithm} % defines a new caption label as Algorithm x.y
|
||||
|
||||
\lstnewenvironment{algorithm}[1][] %defines the algorithm listing environment
|
||||
{
|
||||
\captionsetup{labelformat=algocaption,labelsep=colon} % defines the caption setup for:
|
||||
% it ises label format as the declared
|
||||
% caption label above and makes label
|
||||
% and caption text to be separated
|
||||
% by a ':'
|
||||
\lstset{ %this is the stype
|
||||
mathescape=true,
|
||||
frame=tB,
|
||||
numbers=left,
|
||||
numberstyle=\tiny,
|
||||
basicstyle=\normalfont,
|
||||
columns=fullflexible,
|
||||
keywordstyle=\color{black}\bfseries,
|
||||
keywords={a, for, end, do, b} % add the keywords you want, or load
|
||||
% a language as Rubens explains in his comment above.
|
||||
numbers=left,
|
||||
xleftmargin=.04\textwidth,
|
||||
#1 % this is to add specific settings to an usage of this
|
||||
% environment (for instnce, the caption and referable label)
|
||||
}
|
||||
}
|
||||
{}
|
||||
|
||||
|
||||
\begin{document}
|
||||
|
||||
\newboolean{EnglishLanguage}
|
||||
|
||||
@ -59,12 +59,11 @@
|
||||
\begin{align*}
|
||||
\text{prox}_{\gamma h} \left( \boldsymbol{x} \right) &\equiv
|
||||
arg\min_{\boldsymbol{z}\in\mathbb{R}} \left(
|
||||
\gamma h\left( \boldsymbol{z} \right) + \frac{1}{2} \left| \boldsymbol{z}
|
||||
- \boldsymbol{x} \right|^2 \right)\\
|
||||
\gamma h\left( \boldsymbol{z} \right) + \frac{1}{2} \lVert \boldsymbol{z}
|
||||
- \boldsymbol{x} \rVert^2 \right)\\
|
||||
&\approx \boldsymbol{x} - \gamma \nabla h\left( \boldsymbol{x} \right),
|
||||
\hspace{5mm} \gamma \text{ small}
|
||||
\end{align*}
|
||||
\todo{Euclidean norm symbol}
|
||||
\item Iterative decoding process:
|
||||
\begin{align*}
|
||||
\boldsymbol{r}^{\left( k+1 \right) } &= \boldsymbol{s}^{\left( k \right) }
|
||||
@ -78,10 +77,19 @@
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[t]
|
||||
\begin{frame}[t, fragile]
|
||||
\frametitle{Proximal Decoding: Algorithm}
|
||||
|
||||
\todo{TODO}
|
||||
\begin{algorithm}[caption={}, label={}]
|
||||
$\boldsymbol{s}^{\left( 0 \right)} = \boldsymbol{0}$
|
||||
for $k=0$ to $K-1$ do
|
||||
$\boldsymbol{r}^{\left( k+1 \right)} = \boldsymbol{s}^{(k)} - \omega \nabla L \left( \boldsymbol{s}^{(k)}; \boldsymbol{y} \right) $
|
||||
Compute $\nabla h\left( \boldsymbol{r}^{\left( k+1 \right) } \right)$
|
||||
$\boldsymbol{s}^{\left( k+1 \right)} = \boldsymbol{r}^{(k+1)} - \gamma \nabla h\left( \boldsymbol{r}^{\left( k+1 \right) } \right) $
|
||||
$\boldsymbol{\hat{x}} = \text{sign}\left( \boldsymbol{s}^{\left( k+1 \right) } \right) $
|
||||
If $\boldsymbol{\hat{x}}$ passes the parity check condition, break the loop.
|
||||
end for
|
||||
Output $\boldsymbol{\hat{x}}$
|
||||
\end{algorithm}
|
||||
\end{frame}
|
||||
|
||||
|
||||
|
||||
Loading…
Reference in New Issue
Block a user