Added content to LP Relaxation slide
This commit is contained in:
parent
0b37b48e58
commit
7ebd34ce35
@ -28,7 +28,8 @@
|
||||
\begin{tikzpicture}[scale=1, transform shape]
|
||||
\node (in) {$c\left[ k \right] $};
|
||||
\node[mapper, right=0.5cm of in] (bpskmap) {Mapper};
|
||||
\node[right=1.5cm of bpskmap, draw, circle, inner sep=0pt, minimum size=0.5cm] (add) {$+$};
|
||||
\node[right=1.5cm of bpskmap,
|
||||
draw, circle, inner sep=0pt, minimum size=0.5cm] (add) {$+$};
|
||||
\node[right=0.5cm of add] (out) {$y\left[ k \right] $};
|
||||
\node[below=0.5cm of add] (noise) {$n\left[ k \right] $};
|
||||
|
||||
@ -76,18 +77,19 @@
|
||||
\begin{align*}
|
||||
\text{poly}\left( \mathcal{C} \right) =
|
||||
\left\{
|
||||
\sum_{\boldsymbol{c}\in\mathcal{C}} \lambda_{\boldsymbol{c}} \boldsymbol{c}
|
||||
: \lambda_{\boldsymbol{c}} \ge 0,
|
||||
\sum_{\boldsymbol{c}\in\mathcal{C}}\lambda_{\boldsymbol{c}}
|
||||
\boldsymbol{c} : \lambda_{\boldsymbol{c}} \ge 0,
|
||||
\sum_{\boldsymbol{c}\in\mathcal{C}}\lambda_{\boldsymbol{c}} = 1
|
||||
\right\},
|
||||
\hspace{5mm} \lambda_{\boldsymbol{c}} \in \mathbb{R}
|
||||
\end{align*}
|
||||
\item Cost Function:
|
||||
\begin{align*}
|
||||
\gamma_i = \log\left( \frac{P\left( Y=y_i | C=0 \right) }{P\left( Y=y_i | C=1 \right) } \right),
|
||||
\hspace{5mm} i = \left\{ 1, \ldots, n \right\}
|
||||
\sum_{i=1}^{n} \gamma_i c_i,
|
||||
\hspace{5mm}\gamma_i = \log\left(
|
||||
\frac{P\left( Y=y_i | C=0 \right) }{P\left( Y=y_i | C=1 \right) } \right)
|
||||
\end{align*}
|
||||
\item LP Formulation:
|
||||
\item LP Formulation of ML Decoding:
|
||||
\begin{align*}
|
||||
&\text{minimize } \sum_{i=1}^{n} \gamma_i f_i \\
|
||||
&\text{subject to } \boldsymbol{f}\in\text{poly}\left( \mathcal{C} \right)
|
||||
@ -157,7 +159,81 @@
|
||||
|
||||
\begin{frame}[t]
|
||||
\frametitle{LP Relaxation}
|
||||
|
||||
\todo{TODO}
|
||||
|
||||
\begin{minipage}[c]{0.6\linewidth}
|
||||
\begin{itemize}
|
||||
\item Set of all variable nodes incident to a check node:
|
||||
\begin{align*}
|
||||
N\left( j \right) \equiv \left\{
|
||||
i | i\in \mathcal{I},
|
||||
\boldsymbol{H}_{i,j} = 1
|
||||
\right\},
|
||||
j \in \mathcal{J}
|
||||
\end{align*}
|
||||
\item ``Illegal configurations''
|
||||
\begin{align*}
|
||||
S \subseteq N\left( j \right), \left| S \right| \text{odd}
|
||||
\end{align*}
|
||||
\item Relaxed polytope representation:
|
||||
\begin{align*}
|
||||
\sum_{i\in \left( N\left( j \right) \setminus S\right) }f_i + \sum_{i\in S} \left( 1 - f_i \right) \ge 1
|
||||
\end{align*}
|
||||
``$\boldsymbol{f}$ is separated by at least one bitflip from all illegal configurations''
|
||||
\end{itemize}
|
||||
\end{minipage}%
|
||||
\hfill%
|
||||
\begin{minipage}[c]{0.4\linewidth}
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
|
||||
\tikzstyle{codeword} = [color=KITblue, fill=KITblue,
|
||||
draw, circle, inner sep=0pt, minimum size=4pt]
|
||||
|
||||
\tdplotsetmaincoords{60}{245}
|
||||
\begin{tikzpicture}[scale=1, transform shape, tdplot_main_coords]
|
||||
% Cube
|
||||
|
||||
\draw[dashed] (0, 0, 0) -- (2, 0, 0);
|
||||
\draw[dashed] (2, 0, 0) -- (2, 0, 2);
|
||||
\draw[] (2, 0, 2) -- (0, 0, 2);
|
||||
\draw[] (0, 0, 2) -- (0, 0, 0);
|
||||
|
||||
\draw[] (0, 2, 0) -- (2, 2, 0);
|
||||
\draw[] (2, 2, 0) -- (2, 2, 2);
|
||||
\draw[] (2, 2, 2) -- (0, 2, 2);
|
||||
\draw[] (0, 2, 2) -- (0, 2, 0);
|
||||
|
||||
\draw[] (0, 0, 0) -- (0, 2, 0);
|
||||
\draw[dashed] (2, 0, 0) -- (2, 2, 0);
|
||||
\draw[] (2, 0, 2) -- (2, 2, 2);
|
||||
\draw[] (0, 0, 2) -- (0, 2, 2);
|
||||
|
||||
% Codeword Polytope
|
||||
|
||||
\draw[line width=1pt, color=KITblue] (0, 0, 0) -- (2, 0, 2);
|
||||
\draw[line width=1pt, color=KITblue] (0, 0, 0) -- (2, 2, 0);
|
||||
\draw[line width=1pt, color=KITblue] (0, 0, 0) -- (0, 2, 2);
|
||||
|
||||
\draw[line width=1pt, color=KITblue] (2, 0, 2) -- (2, 2, 0);
|
||||
\draw[line width=1pt, color=KITblue] (2, 0, 2) -- (0, 2, 2);
|
||||
|
||||
\draw[line width=1pt, color=KITblue] (0, 2, 2) -- (2, 2, 0);
|
||||
|
||||
% Polytope Annotations
|
||||
|
||||
\node[codeword, color=KITred] (c111) at (2, 2, 2) {};% {$\left( 0, 0, 0 \right) $};
|
||||
\node[codeword, color=KITred] (c001) at (0, 0, 2) {};% {$\left( 1, 0, 1 \right) $};
|
||||
\node[codeword, color=KITred] (c100) at (2, 0, 0) {};% {$\left( 1, 1, 0 \right) $};
|
||||
\node[codeword, color=KITred] (c010) at (0, 2, 0) {};% {$\left( 0, 1, 1 \right) $};
|
||||
|
||||
\node[color=KITred, left=0cm of c111] {$\left( 1, 1, 1 \right) $};
|
||||
\node[color=KITred, right=0cm of c001] {$\left( 0, 0, 1 \right) $};
|
||||
\node[color=KITred, right=0.35cm of c100] {$\left( 1, 0, 0 \right) $};
|
||||
\node[color=KITred, below=0cm of c010] {$\left( 0, 1, 0 \right) $};
|
||||
\end{tikzpicture}
|
||||
\caption{Relaxed polytope for $n=3$}
|
||||
\end{figure}
|
||||
\end{minipage}
|
||||
\todo{How is this a relaxation and not just an alternative formulation?}
|
||||
\end{frame}
|
||||
|
||||
|
||||
Loading…
Reference in New Issue
Block a user