diff --git a/sw/main.py b/sw/main.py index 08079f7..da38090 100644 --- a/sw/main.py +++ b/sw/main.py @@ -33,34 +33,34 @@ def plot_results(): def main(): - # Path("sim_results").mkdir(parents=True, exist_ok=True) - # - # # used_code = "Hamming_7_4" - # # used_code = "Golay_24_12" + Path("sim_results").mkdir(parents=True, exist_ok=True) + + used_code = "Hamming_7_4" + # used_code = "Golay_24_12" # used_code = "BCH_31_16" - # # used_code = "BCH_31_21" - # # used_code = "BCH_63_16" - # - # G = codes.Gs[used_code] - # H = codes.get_systematic_H(G) - # - # decoders = [ - # maximum_likelihood.MLDecoder(G, H), - # proximal.ProximalDecoder(H, gamma=0.01), - # proximal.ProximalDecoder(H, gamma=0.05), - # proximal.ProximalDecoder(H, gamma=0.15) - # ] - # - # k, n = G.shape - # SNRs, BERs = simulations.test_decoders(n, k, decoders, N_max=30000, target_frame_errors=100) - # - # df = pd.DataFrame({"SNR": SNRs}) - # df["BER_ML"] = BERs[0] - # df["BER_prox_0_01"] = BERs[0] - # df["BER_prox_0_05"] = BERs[1] - # df["BER_prox_0_15"] = BERs[2] - # - # df.to_csv(f"sim_results/{used_code}.csv") + # used_code = "BCH_31_21" + # used_code = "BCH_63_16" + + G = codes.Gs[used_code] + H = codes.get_systematic_H(G) + + decoders = [ + maximum_likelihood.MLDecoder(G, H), + proximal.ProximalDecoder(H, gamma=0.01), + proximal.ProximalDecoder(H, gamma=0.05), + proximal.ProximalDecoder(H, gamma=0.15) + ] + + k, n = G.shape + SNRs, BERs = simulations.test_decoders(n, k, decoders, target_frame_errors=100) + + df = pd.DataFrame({"SNR": SNRs}) + df["BER_ML"] = BERs[0] + df["BER_prox_0_01"] = BERs[1] + df["BER_prox_0_05"] = BERs[2] + df["BER_prox_0_15"] = BERs[3] + + df.to_csv(f"sim_results/{used_code}.csv") plot_results()