Implemented naive soft decision decoder
This commit is contained in:
parent
04eaea92a1
commit
78fd8bf95c
54
sw/decoders/naive_soft_decision.py
Normal file
54
sw/decoders/naive_soft_decision.py
Normal file
@ -0,0 +1,54 @@
|
|||||||
|
import numpy
|
||||||
|
import numpy as np
|
||||||
|
import itertools
|
||||||
|
|
||||||
|
|
||||||
|
class SoftDecisionDecoder:
|
||||||
|
"""This class naively implements a soft decision decoder. This decoder calculates
|
||||||
|
the posterior probability for each codeword and then chooses the one with the largest
|
||||||
|
probability.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, G: np.array, H: np.array):
|
||||||
|
"""Construct a new SotDecisionDecoder object.
|
||||||
|
|
||||||
|
:param G: Generator matrix
|
||||||
|
:param H: Parity check matrix
|
||||||
|
"""
|
||||||
|
self._G = G
|
||||||
|
self._H = H
|
||||||
|
self._datawords, self._codewords = self._gen_codewords()
|
||||||
|
self._codewords_bpsk = self._codewords * 2 - 1 # The codewords, but mapped to [-1, 1]^n
|
||||||
|
|
||||||
|
def _gen_codewords(self) -> np.array:
|
||||||
|
"""Generate a list of all possible codewords.
|
||||||
|
|
||||||
|
:return: Numpy array of the form [[codeword_1], [codeword_2], ...]
|
||||||
|
"""
|
||||||
|
k, n = self._G.shape
|
||||||
|
|
||||||
|
# Generate a list of all possible data words
|
||||||
|
u_lst = [list(i) for i in itertools.product([0, 1], repeat=k)]
|
||||||
|
u_lst = np.array(u_lst)
|
||||||
|
|
||||||
|
# Map each data word onto a codeword
|
||||||
|
c_lst = np.dot(u_lst, self._G) % 2
|
||||||
|
|
||||||
|
return u_lst, c_lst
|
||||||
|
|
||||||
|
def decode(self, y: np.array) -> np.array:
|
||||||
|
"""Decode a received signal.
|
||||||
|
|
||||||
|
This function assumes a BPSK-like modulated signal ([-1, 1]^n instead of [0, 1]^n)
|
||||||
|
and an AWGN channel.
|
||||||
|
|
||||||
|
:param y: Vector of received values. (y = x + n, where 'x' is element of [-1, 1]^m
|
||||||
|
and 'n' is noise)
|
||||||
|
:return: Most probably sent symbol
|
||||||
|
"""
|
||||||
|
# TODO: Is there a nice numpy way to implement this for loop?
|
||||||
|
correlations = []
|
||||||
|
for c in self._codewords_bpsk:
|
||||||
|
correlations.append(np.dot(y, c))
|
||||||
|
|
||||||
|
return self._datawords[numpy.argmax(correlations)]
|
||||||
@ -1,5 +1,4 @@
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
from tqdm import tqdm
|
|
||||||
|
|
||||||
|
|
||||||
class ProximalDecoder:
|
class ProximalDecoder:
|
||||||
|
|||||||
@ -44,6 +44,7 @@ def count_bit_errors(d: np.array, d_hat: np.array) -> int:
|
|||||||
|
|
||||||
|
|
||||||
def test_decoder(decoder: typing.Any,
|
def test_decoder(decoder: typing.Any,
|
||||||
|
d: np.array,
|
||||||
c: np.array,
|
c: np.array,
|
||||||
SNRs: typing.Sequence[float] = np.linspace(1, 4, 7),
|
SNRs: typing.Sequence[float] = np.linspace(1, 4, 7),
|
||||||
target_bit_errors=100,
|
target_bit_errors=100,
|
||||||
@ -54,6 +55,7 @@ def test_decoder(decoder: typing.Any,
|
|||||||
This function prints its progress to stdout.
|
This function prints its progress to stdout.
|
||||||
|
|
||||||
:param decoder: Instance of the decoder to be tested
|
:param decoder: Instance of the decoder to be tested
|
||||||
|
:param d: Dataword (element of [0, 1]^n)
|
||||||
:param c: Codeword whose transmission is to be simulated (element of [0, 1]^n)
|
:param c: Codeword whose transmission is to be simulated (element of [0, 1]^n)
|
||||||
:param SNRs: List of SNRs for which the BER should be calculated
|
:param SNRs: List of SNRs for which the BER should be calculated
|
||||||
:param target_bit_errors: Number of bit errors after which to stop the simulation
|
:param target_bit_errors: Number of bit errors after which to stop the simulation
|
||||||
@ -79,7 +81,7 @@ def test_decoder(decoder: typing.Any,
|
|||||||
y = add_awgn(x, SNR, signal_amp=np.sqrt(2))
|
y = add_awgn(x, SNR, signal_amp=np.sqrt(2))
|
||||||
y_hat = decoder.decode(y)
|
y_hat = decoder.decode(y)
|
||||||
|
|
||||||
total_bit_errors += count_bit_errors(c, y_hat)
|
total_bit_errors += count_bit_errors(d, y_hat)
|
||||||
total_bits += c.size
|
total_bits += c.size
|
||||||
|
|
||||||
if total_bit_errors >= target_bit_errors:
|
if total_bit_errors >= target_bit_errors:
|
||||||
|
|||||||
@ -4,6 +4,7 @@ import seaborn as sns
|
|||||||
import pandas as pd
|
import pandas as pd
|
||||||
|
|
||||||
from decoders import proximal
|
from decoders import proximal
|
||||||
|
from decoders import naive_soft_decision
|
||||||
from decoders import utility
|
from decoders import utility
|
||||||
|
|
||||||
|
|
||||||
@ -21,13 +22,14 @@ def main():
|
|||||||
|
|
||||||
# Test decoder
|
# Test decoder
|
||||||
|
|
||||||
d = np.array([0, 1, 1, 1])
|
d = np.array([0, 0, 0, 0])
|
||||||
c = np.dot(G.transpose(), d) % 2
|
c = np.dot(G.transpose(), d) % 2
|
||||||
|
|
||||||
print(f"Simulating with c = {c}")
|
print(f"Simulating with c = {c}")
|
||||||
|
|
||||||
decoder = proximal.ProximalDecoder(H, K=100, gamma=0.01)
|
# decoder = proximal.ProximalDecoder(H, K=100, gamma=0.01)
|
||||||
SNRs, BERs = utility.test_decoder(decoder, c, SNRs=np.linspace(1, 5.5, 7), target_bit_errors=200, N_max=15000)
|
decoder = naive_soft_decision.SoftDecisionDecoder(G, H)
|
||||||
|
SNRs, BERs = utility.test_decoder(decoder, d, c, SNRs=np.linspace(1, 7, 9), target_bit_errors=500, N_max=10000)
|
||||||
|
|
||||||
data = pd.DataFrame({"SNR": SNRs, "BER": BERs})
|
data = pd.DataFrame({"SNR": SNRs, "BER": BERs})
|
||||||
|
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user